Skip to main content
Log in

On different modifications of the capillary model of penetration of inert liquid metals into porous refractories and their connection to the pore size distribution of the refractories

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Different modifications to the classical capillary model of penetration of liquid metals into porous refractories are presented; (1) with capillaries having different radii, (2) with zigzag capillaries, and (3) with capillaries, having periodically changing capillary radius along the path of penetration. All the modified capillary models were checked against our experimental results of measuring the penetration of liquid mercury into three types of alumina refractories, having different microstructure and pore size distribution. The maximum penetration height was measured by X-ray radiography, as a function of applied outside pressure. The model with periodically changing capillary has been found to describe the experimental data satisfactorily. This model divides the process of penetration into two stages. During the first period of “pre-penetration,” the maximum penetration height changes very slowly (but not linearly) as the outside pressure is increased in the interval between the “minimum threshold pressure” and the “maximum threshold pressure.” In the second, “bulk penetration” period, appearing above the maximum threshold pressure, the maximum height of penetration increases rapidly with outside pressure, according to the classical capillary model of penetration. The three structural model parameters of the model (minimum pore radius, maximum pore radius, and period of pore structure) were connected with the measured pore size distribution curves of the refractories through semiempirical equations. As a result, our complex semiempirical model is able to predict penetration diagrams for any inert liquid metal into any refractory of a similar type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Delannay, L. Froyen, and A. Deruyttere: J. Mater. Sci., 1987, vol. 22, pp. 1–16.

    Article  CAS  Google Scholar 

  2. R. Asthana, P.K. Rohatgi, and S.N. Tewari: Processing Adv. Composites, 1992, vol. 2, pp. 1–17.

    CAS  Google Scholar 

  3. A. Mortensen and I. Jin: Int. Mater. Rev., 1992, vol. 37, pp. 101–28.

    CAS  Google Scholar 

  4. C. Garcia-Cordovilla, E. Louis, and J. Narciso: Acta Mater., 1999, vol. 47, pp. 4461–79.

    Article  CAS  Google Scholar 

  5. G. Kaptay: in Affordable Metal-Matrix Composites for High Performance Applications, A.B. Pandey, K.L. Kendig, and T.J. Watson, eds., TMS, Warrendale, PA, 2001, pp. 71–99.

    Google Scholar 

  6. R. Scheel and F. Oeters: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 769–77.

    CAS  Google Scholar 

  7. Y. Wanibe, H. Tsuchida, T. Fujisawa, and H. Sakao: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 322–30 and 331–39.

    CAS  Google Scholar 

  8. A. Tsuchinari and O. Simobayashi: Taikabutsu, 1989, vol. 41, pp. 42–43.

    CAS  Google Scholar 

  9. D.M. Stefanescu, P. Delannoy, T.S. Piwonka, and S. Kacar: AFS Trans., 1991, vol. 99, pp. 761–79.

    CAS  Google Scholar 

  10. S. Niwa, C. Iwasawa, and K. Hayamizu: Taikabutsu, 1991, vol. 43, pp. 241–45.

    CAS  Google Scholar 

  11. G. Kaptay and D.M. Stefanescu: AFS Trans., 1992, vol. 100, pp. 707–12.

    CAS  Google Scholar 

  12. Z. Yu, K. Mukai, K. Kawasaki, and I. Furusato: J. Ceram. Soc. Japan, 1993, vol. 101, pp. 521–27.

    Google Scholar 

  13. H. Nakae and Y. Matsuda: J. Jpn. Foundry Eng. Soc., 1999, vol. 71, pp. 28–33.

    CAS  Google Scholar 

  14. H. Nakae and Y. Matsuda: J. Jpn. Foundry Eng. Soc., 2000, vol. 72, pp. 102–06.

    CAS  Google Scholar 

  15. K. Mukai, Z. Tao, K. Goto, Z. Li, and T. Takashima: J. Techn. Assoc. Refractories, Jpn., 2001, vol. 21, pp. 3–10.

    Google Scholar 

  16. Z. Li, K. Mukai, Z. Tao, T. Ohuchi, I. Sasaka, and S. Iitsuka: J. Techn. Assoc. Refractories. Jpn., 2001, vol. 21, pp. 65–72.

    CAS  Google Scholar 

  17. K. Mukai, Z. Tao, K. Goto, Z. Li, and T. Takashima: Scand. J. Metall., 2002, vol. 31, pp. 68–78.

    Article  CAS  Google Scholar 

  18. T. Matsushita and T. Ohuchi: Taikabutsu, 2002, vol. 54, pp. 221–25.

    CAS  Google Scholar 

  19. T. Matsushita, T. Ohuchi, K. Mukai, I. Sasaka, and J. Yoshitomi: Taikabutsu, 2002, vol. 54, pp. 242–48.

    CAS  Google Scholar 

  20. T. Matsushita, T. Ohuchi, K. Mukai, I. Sasaka, and J. Yoshitomi: J. Techn. Assoc. Refractories, Jpn., 2003, vol. 23, pp. 15–19.

    Google Scholar 

  21. T. Matsushita, K. Mukai, T. Ohuchi, I. Sasaka, and J. Yoshitomi: Taikabutsu, 2003, vol. 55, pp. 120–27.

    CAS  Google Scholar 

  22. S.Y. Oh, J.A. Cornie, and K.C. Russel: Ceram. Eng. Sci. Proc., 1987, vol. 8, pp. 912–36

    Article  CAS  Google Scholar 

  23. A. Alonso, A. Pamies, J. Narciso, C. Garcia-Cordovilla, and E. Louis: Metall. Trans. A, 1993, vol. 24A, pp. 1423–32

    CAS  Google Scholar 

  24. S.Y. Chong, H.V. Atkinson, and H. Jones: Mater. Sci. Eng., 1993, vol. A173, pp. 233–37.

    CAS  Google Scholar 

  25. Handbook of Physico-Chemical Properties at High Temperatures, Y. Kawai and Y. Shiraishi, eds., ISIJ, Japan, 1988.

    Google Scholar 

  26. T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1993, p. 288.

    Google Scholar 

  27. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon, Amsterdam, The Netherlands, 1999, p. 420.

    Google Scholar 

  28. G.J.S. Maxwell: Encyclopedia Britannica, 9th ed., T.S. Baynes, ed., Samuel L. Hall, New York, NY, 1878, pp. 56–71.

    Google Scholar 

  29. E.W. Washburn: Phys. Rev., 1921, vol. 17, pp. 273–83.

    Article  ADS  Google Scholar 

  30. K.A. Semlak and F.N. Rhines: Trans. TMS-AIME, 1958, pp. 325–31.

  31. X.F. Yang and X.M. Xi: J. Mater. Sci., 1995, vol. 30, pp. 5099–102.

    Article  CAS  Google Scholar 

  32. K.P. Trumble: Acta Mater., 1998, vol. 46 (7), pp. 2363–67.

    Article  CAS  Google Scholar 

  33. G. Kaptay: Mater. Sci. Forum, 2003, vols. 414–415, pp. 419–24.

    Article  Google Scholar 

  34. P.C. Carman: Soil Sci., 1941, vol. 52, pp. 1–14.

    Article  CAS  Google Scholar 

  35. A. Mortensen and J.A. Cornie: Metall. Trans. A, 1987, vol. 18A, pp. 1160–63.

    CAS  Google Scholar 

  36. A. Mortensen: Metall. Trans. A, 1990, vol. 21A, p. 2287.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaptay, G., Matsushita, T., Mukai, K. et al. On different modifications of the capillary model of penetration of inert liquid metals into porous refractories and their connection to the pore size distribution of the refractories. Metall Mater Trans B 35, 471–486 (2004). https://doi.org/10.1007/s11663-004-0048-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0048-y

Keywords

Navigation