Skip to main content
Log in

Kinetics of chlorination of tantalum pentoxide in mixture with sucrose carbon by chlorine gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The mechanism and kinetics of β-Ta2O5 chlorination, mixed with sucrose carbon, have been studied by a thermogravimetric technique. The investigated temperature range was 500 °C to 850 °C. The reactants and reaction residues were analyzed by scanning electronic microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller method for surface area (BET). The effect of various experimental parameters was studied, such as carbon percentage, temperature, chlorine partial pressure, and flow, use of the multiple sample method, and carbon previous oxidation. The carbon percentage and previous treatment have an effect on the system reactivity. The temperature has a marked effect on the reaction rate. In the 500 °C to 600 °C temperature interval, the apparent activation energy is 144 kJ/mol of oxide, while at higher temperatures, the activation energy decreases. With high chorine partial pressures, the order of reaction is near zero. The kinetic contractile plate model, X=kt, considering carbon oxidation as the controlling stage, is the one with the best fit to the experimental data. A probable mechanism for the carbochlorination of β-Ta2O5 is proposed: (1) activation of chlorine on the carbon surface, (2) chlorination of Ta2O5, (3) oxidation of carbon, and (4) recrystallization of β-Ta2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Barin and W. Schuler: Metall. Trans. B, 1980, vol. 11B, pp. 199–207.

    Google Scholar 

  2. D. Pasquevich, J. Andrade Gamboa, and R. Caneiro: Thermochim. Acta, 1992, vol. 209, pp. 209–22.

    Article  CAS  Google Scholar 

  3. D. Pasquevich and V. Amorebieta: Ber. Bunsenges. Phys. Chem., 1992, vol. 96, pp. 534–41.

    Google Scholar 

  4. A. Bergholm: Trans. TMS-AIME, 1961, vol. 221, pp. 1121–29.

    CAS  Google Scholar 

  5. E. Zucherato and E. Cámara: Mineral Technology Part B, Proc. III Meting of The Southerm Hemisphere of Mineral Technology and XV Brazilian Meting on Mineral Procesing and Hidrometallurgy, 1992, São Lourenço, Mina gerais, Brazil, pp. 542–60.

    Google Scholar 

  6. F. Gennari, A. Bohé, and D. Pasquevich: Thermochim. Acta, 1997, vol. 302, pp. 53–61.

    Article  CAS  Google Scholar 

  7. F. Gennari: Ph.D. Thesis, Universidad Nacional de La Plata, La Plata, Argentina, 1998.

    Google Scholar 

  8. O. Bicerolu and H. Gauvin: Can. J. Chem. Eng., 1980, vol. 58, pp. 357–63.

    Article  CAS  Google Scholar 

  9. R.S. Olsen and F.E. Block: Chem. Eng. Progress Symp. Ser. 66, 1970, vol. 105, pp. 225–28.

    Google Scholar 

  10. A.W. Henderson, S.L. May, and K.B. Higbie: Ind. Eng. Chem., 1958, vol. 50, pp. 611–12.

    Article  CAS  Google Scholar 

  11. F. Fairbrother, A.H. Cowley, and N. Scott: J. Less-Common Met., 1959, vol. 1, pp. 206–16.

    Article  CAS  Google Scholar 

  12. R. Lind and T.A. Ingles: Report No. TN 106, United Kingdom Atomic Energy Authority, United Kingdom, 1959.

    Google Scholar 

  13. O.K. Mehra and P.K. Jena: Trans. Indian Inst. Met., 1967, vol. 20, pp. 210–13.

    CAS  Google Scholar 

  14. O.K. Mehra, K.S.Z. Hussain, and Jena, P.K.: Trans. Indian Inst. Met., 1966, vol. 19, pp. 53–256.

    CAS  Google Scholar 

  15. M. del C. Ruiz, J.A. González, and J.B. Rivarola: Can. Met. Q., 1997, vol. 36, pp. 103–10.

    Article  CAS  Google Scholar 

  16. J.A. González, F.C. Gennari, M. del C. Ruiz, A.E. Bohé, and D.M. Pasquevich,.: Trans. Inst. Mining Metall., Sect. C: Mineral Processing Extr. Metall., 1998, vol. 103, pp. C130-C135.

    Google Scholar 

  17. J.A. González, J.B. Rivarola, D. Pasquevich, and M. del C. Ruiz: J. Mater. Sci., 1998, vol. 33, pp. 4173–80.

    Article  Google Scholar 

  18. J. González, A. Bohé, D. Pasquevich, and M. del C. Ruiz: Can. Metall. Q., 2002, vol. 41, pp. 29–40.

    Google Scholar 

  19. E. Allain, M. Djona, and I. Gaballah: Metall. Trans. B, 1997, vol. 28B, pp. 223–33.

    Article  CAS  Google Scholar 

  20. A. Tóth, I. Bertóti, and T. Székely: Thermochim. Acta, 1982, vol. 52, pp. 211–15.

    Article  Google Scholar 

  21. I. Bertóti, A. Tóth, T. Székely, and Y.S. Pap: Thermochim. Acta, 1981, vol. 44, pp. 325–31.

    Article  Google Scholar 

  22. M. Soleiman and I. Rao: Metall. Trans. B, 1987, vol. 18B, pp. 459–70.

    CAS  Google Scholar 

  23. A. Roine: Outukumpu HSC Chemistry for Windows Version 5.1, Outokumpu Research, Pori, Finland, 2003.

    Google Scholar 

  24. I. Gaballah, E. Allain, and M. Jona: in Light Metals 1994, U. Mannweiler, ed., TMS, Warrendale, PA, 1994, vol. 1, pp. 153–61.

    Google Scholar 

  25. J. González, M. del C. Ruiz, A. Bohé, and D. Pasquevich: Carbon, 1999, vol. 37, pp. 1979–88.

    Article  Google Scholar 

  26. F. Yang and V. Hlavacek: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1297–1307.

    Article  CAS  Google Scholar 

  27. A. Bohé and D. Pasquevich: Ver. Bunsenges. Phys. Chem., 1995, vol. 99, pp. 1553–58.

    Google Scholar 

  28. C.J. Chen and M.H. Back: Carbon, 1979, vol. 17, pp. 495–501.

    Article  CAS  Google Scholar 

  29. P.K. Jena, E.A. Brocchi, and D.H. Gameiro: Trans. Inst. Mining Metall., Sect. C: Mineral Processing Extr. Metall., 1998, vol. 103, pp. C139-C145.

    Google Scholar 

  30. H. Tobias and A. Soffer: Carbon, 1985, vol. 23, pp. 281–89.

    Article  CAS  Google Scholar 

  31. J. Andrade Gamboa and D.M. Pasquevich: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1439–46.

    Article  Google Scholar 

  32. I. Gaballah, M Djona and E. Allain: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 711–18.

    CAS  Google Scholar 

  33. F. Habashi: Principles of Extractive Metallurgy. General Principles, 2nd ed., Gordon and Breach Science Publishers, Inc., New York, NY, 1980, vol 1, pp. 111–69.

    Google Scholar 

  34. O.D. Quiroga, J.R. Avanza, and A.J. Fusco: Modelado Cinético de lasTtransformaciones Fluido-Sólido Reactivo, Editorial Universitaria de la Universidad Nacional del Nordeste, EUDENE, Buenos Aires, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del C. Ruiz, M., González, J.A. & Rivarola, J.B. Kinetics of chlorination of tantalum pentoxide in mixture with sucrose carbon by chlorine gas. Metall Mater Trans B 35, 439–448 (2004). https://doi.org/10.1007/s11663-004-0045-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0045-1

Keywords

Navigation