Skip to main content
Log in

Laminar-turbulent transition in an electromagnetically levitated droplet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During experiments on the MSL-1 (first microgravity science laboratory) mission of the space shuttle (STS-83 and STS-94, April and July 1997), a droplet of palladium-silicon alloy was electromagnetically levitated for viscosity measurements. For the nondeforming droplet, the resultant magnetohydrodynamic (MHD) flow inside the drop can be inferred from motion of impurity particulates on the surface. In the experiments, subsequent to melting, Joule heating produces a continuous reduction of viscosity of the fluid resulting in an acceleration of the flow with time. These observations indicate formation of a pair of co-rotating toroidal flow structures inside the spheroidal drop that undergo flow instabilities. As the fluid temperature rises, the amplitude of the secondary flow increases, and beyond a point, the tracers exhibit noncoherent chaotic motion signifying emergence of turbulence inside the drop. Assuming that the observed laminar-turbulent transition is shear-layer type, the internal structure of the toroidal loops is used to develop a semiempirical correlation for the onset of turbulence. Our calculations indicate that the suggested correlation is in modest agreement with the experimental data, with the transition occurring at a Reynolds number of 600.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Hyers: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

    Google Scholar 

  2. R. Knauf, J. Piller, A. Seidel, M. Stauber, U. Zell, and W. Dreier: VI Int. Symp. on Experimental Methods for Microgravity Materials Science, TMS, Warrendale, PA, 1994, pp. 73–79.

    Google Scholar 

  3. A.J. Mestel: J. Fluid Mech., 1982, vol. 117, pp. 27–43.

    Article  Google Scholar 

  4. A.D. Sneyd and H.K. Moffatt: J. Fluid Mech., 1982, vol. 117, pp. 45–70.

    Article  CAS  Google Scholar 

  5. N. El-Kaddah and J. Szekely: Metall. Trans. B, 1983, vol. 14B, pp. 401–10.

    CAS  Google Scholar 

  6. N. El-Kaddah and J. Szekely: Metall. Trans. B, 1984, vol. 15B, pp. 183–86.

    CAS  Google Scholar 

  7. J.H. Zong, B.Q. Li, and J. Szekely: Acta Astronautica, 1993, vol. 29 (4), pp. 305–11.

    Article  Google Scholar 

  8. B.Q. Li: Int. J. Eng. Sci., 1994, vol. 32 (1), pp. 45–67.

    Article  CAS  Google Scholar 

  9. E.M. Schwartz and J. Szekely: VI Int. Symp. Experimental Methods for Microgravity Materials Science, TMS, Warrendale, PA, 1994, pp. 73–79.

    Google Scholar 

  10. B.Q. Li: Int. J. Eng. Sci., 1994, vol. 32 (8), pp. 1315–36.

    Article  CAS  Google Scholar 

  11. E.M. Schwartz: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

    Google Scholar 

  12. A. Bratz and I. Egry: J. Fluid Mech., 1995, vol. 298, pp. 341–59.

    Article  Google Scholar 

  13. U.B. Sathuvalli and Y. Bayazitoglu: IEEE Trans. Mag., 1996, vol. 32 (2), pp. 386–99.

    Article  Google Scholar 

  14. Y. Bayazitoglu, U.B.R. Sathuvalli, P.V.R. Suryanarayana, and G.F. Mitchell: Phys. Fluids, 1996, vol. 8 (2), pp. 370–83.

    Article  CAS  Google Scholar 

  15. S.P. Song, B.Q., Li, and J.M. Khodadadi: Int. J. Num. Methods Heat Fluid Flow, 1998, vol. 8 (3), pp. 321–49.

    Article  CAS  Google Scholar 

  16. R.W. Hyers, G. Trapaga, and M.C. Flemings: Solidification 1999, TMS, Warrendale, PA, 1999, pp. 23–32.

    Google Scholar 

  17. S. Berry, R.W. Hyers, B. Abedian, and L.M. Racz: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 171–78.

    Article  CAS  Google Scholar 

  18. W.H. Hofmeister, C.M. Morton, R.J. Bayuzick, and M.B. Robinson: Solidification 1999, TMS, Warrendale, PA, 1999, pp. 75–82.

    Google Scholar 

  19. D.M. Matson, W. Löser, and M.C. Flemings: Solidification 1999, TMS, Warrendale, PA, 1999, pp. 99–106.

    Google Scholar 

  20. J. Szekely and R. Hyers: “Measurement of the Viscosity of Undercooled Melts under the Conditions of Microgravity and Supporting MHD Calculations,” 2nd Int. Microgravity Laboratory (IML-2) Final Report, NASA/CR-97-206129, NASA, Washington DC, 1995.

    Google Scholar 

  21. S. Berry, L.M. Racz, and B. Abedian: Tufts University, Medford, MA 02155, unpublished, 2000.

  22. I. Egry, G. Lohöfer, I. Seyhan, S. Schneider, and B. Feuerbacher: Appl. Phys. Lett., 1998, vol. 73 (4), pp. 462–63.

    Article  CAS  Google Scholar 

  23. B. Damaschke and K. Samwer: Appl. Phys. Lett., 1999, vol. 75 (15), pp. 2220–23.

    Article  CAS  Google Scholar 

  24. B. Damaschke and K. Samwer: University of Augsberg, Augsberg, Germany, private communication, 1998.

  25. N.A. Vatolin, O.A. Esin, and E.L. Dubinin: Russ. J. Phys. Chem., 1967, vol. 41 (7), pp. 971–73.

    Google Scholar 

  26. T. Ida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988.

    Google Scholar 

  27. C.C. Lin: The Theory of Hydrodynamic Stability, Cambridge University Press, Cambridge, United Kingdom, 1955.

    Google Scholar 

  28. J. Lighthill: Laminar-Turbulent Transition: JUTAM Symposium, Sendai, Japan September 5–9, 1994, Springer-Verlag, New York, 1995, pp. 1–13.

    Google Scholar 

  29. D. Coles: J. Fluid Mech., 1965, vol. 21, pp. 385–425.

    Article  Google Scholar 

  30. K. Nakabayashi: J. Fluid Mech., 1983, vol. 132, pp. 209–30.

    Article  Google Scholar 

  31. C. Andreck, S. Liu, and H. Swinny: J. Fluid Mech., 1996, vol. 164, pp. 155–83.

    Article  Google Scholar 

  32. T.G. Wang, A.V. Anilkumar, C.P. Lee, and K.C. Lin: J. Fluid Mech., 1994, vol. 276, pp. 389–403.

    Article  Google Scholar 

  33. J. Herraro, F.F. Giralt, and J.A.C. Humphery: Phys. Fluids, 1999, vol. 8, pp. 88–96.

    Article  Google Scholar 

  34. V. Shatrov, V. Galindo, and G. Gerbeth: PANIR Conf., Gives, France, Sept. 2000.

  35. T.E. Faber: Fluid Dynamics for Physicists, Cambridge University Press, Cambridge, United Kingdom, 1995.

    Google Scholar 

  36. A. Bejan and J.L. Lage: J. Heat Transfer, 1975, vol. 18, pp. 1323–29.

    Article  Google Scholar 

  37. P.A. Davidson: J. Fluid Mech., 1992, vol. 245, pp. 669–99.

    Article  CAS  Google Scholar 

  38. H.K. Moffat: MHD-Flows and Turbulence II-Proc. 2nd Bat-Sheva Int. Sem., Israel University Press, Jerusalem, 1980, p. 55.

    Google Scholar 

  39. Team TEMPUS: Materials and Fluids under Low Gravity, Lecture Notes in Physics 464, Springer, New York, NY, 1996, pp. 233–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyers, R.W., Trapaga, G. & Abedian, B. Laminar-turbulent transition in an electromagnetically levitated droplet. Metall Mater Trans B 34, 29–36 (2003). https://doi.org/10.1007/s11663-003-0052-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-003-0052-7

Keywords

Navigation