Skip to main content
Log in

Experimental and theoretical studies of the motion generated by a two-frequency magnetic field at the free surface of a gallium pool

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The behavior of a free surface of liquid metal in the presence of a periodic magnetic field pulsating at two frequencies (a midrange frequency f 1 and a low frequency f 2, referred to as the modulation frequency) has been investigated. An expression for the forces induced in an electroconductive material by such a field is established for f 2f 1, and a heuristic model is developed to describe the free surface axisymmetric deformations of an inviscid liquid metal submitted to modulated electromagnetic forces. The electromagnetic forces generate standing waves with an oscillation frequency of f 2 or 2f 2. Experiments performed on a cylindrical gallium pool show that the observed surface waves are concentric. The maximum amplitude of the surface oscillations and their frequency are measured by means of a contact probe and analyzed with respect to the modulation frequency f 2. The oscillation amplitude exhibits resonance peaks for values of f 2 corresponding to the eigenfrequencies of the free surface modes. The various free surface oscillation modes are identified. Depending on the value of f 2, the free surface oscillates at the frequency f 2 or at the frequency 2f 2. The experimental features of the free surface oscillations agree qualitatively with those predicted by the proposed heuristic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 0 :

electromagnetic vector potential

a :

pool radius

B 0 :

magnetic field strength

F 0 :

electromagnetic forces

f :

frequency of the magnetic field

f 1 :

basic frequency

f 2 :

modulation frequency

f 0,n :

eigenfrequencies of the modes (0, n)

f FS :

frequency of the free surface deformation

f(r/a):

shape function

g(r/a):

shape function

H 0 :

pool height

h m :

dome height

I 0 :

coil current modulus

J 0(x):

zero-order Bessel function

l c :

capillary length

m(t):

modulation function

m 20 :

direct component of the modulation function

m(t):

oscillating component of the modulation function

P m :

magnetic pressure

δ p :

pressure jump at the free surface

R ω :

shield number

U A :

Alfven speed

U b :

order of magnitude of the bulk velocities

U s :

free surface velocity

V e :

excitation voltage

α :

actual modulation coefficient

α 0 :

applied modulation coefficient

δ :

electromagnetic skin depth

Φ:

velocity potential

γ :

surface tension

η :

free surface deformation

η 0 :

free surface static deformation

λ na:

nth zero of J’ o(x)

μ :

magnetic permeability

ρ :

density

σ :

electrical conductivity

ω :

angular frequency

References

  1. R. Moreau: Magnetohydrodynamics, Kluwer Academic Pub., 1990.

  2. J.N. Barbier, Y. Fautrelle, J.W. Evans, and P. Cremer: J. Mécanique Théorique Appliquée, 1982, vol. 1 (3), pp. 533–56.

    Google Scholar 

  3. A. Sneyd: J. Fluid Mech., 1979, vol. 92, pp. 35–51.

    Article  Google Scholar 

  4. J. Sakane, B. Li, and J.W. Evans: Metall. Trans. B, 1988, vol. 19B, pp. 397–408.

    CAS  Google Scholar 

  5. Y. Fautrelle: J. Fluid Mech., 1981, vol. 102, pp. 405–30.

    Article  Google Scholar 

  6. E. Taberlet and Y. Fautrelle: J. Fluid Mech., 1985, vol. 159, pp. 409–31.

    Article  Google Scholar 

  7. N. El Kaddah and J. Szekely: J. Fluid Mech., 1983, vol. 133, pp. 37–46.

    Article  Google Scholar 

  8. J.M. Galpin and Y. Fautrelle: J. Fluid Mech., 1992, vol. 239, pp. 383–408.

    Article  CAS  Google Scholar 

  9. J.M. Galpin, Y. Fautrelle, and A. Sneyd: J. Fluid Mech., 1992, vol. 239, pp. 409–27.

    Article  CAS  Google Scholar 

  10. M. Faraday: Phil. Trans. R. Soc. London, 1831, vol. 121, pp. 319–40.

    Google Scholar 

  11. M. Burty, J.M. Galpin, Y. Fautrelle, F. Debray, T. Inomoto, Y. Ogawa, T. Toh, and I. Sawada: Proc. 3rd Int. Symp. on Electromagnetic Processing of Materials, The Iron and Steel Institute of Japan, Sendai, 2000, pp. 321–326.

    Google Scholar 

  12. V. Dubodelov, V.L. Fixsen, V.K. Pogorsky, A.O. Gorshkov, and N.A. Slazhnev: Proc. 3rd Int. Symp. on Electromagnetic Processing of Materials, The Iron and Steel Institute of Japan, Sendai, 2000, pp. 67–72.

    Google Scholar 

  13. K.-H. Spitzer, G. Reiter, and K. Schwerdtfeger: Proc. Int. Symp. on Electromagnetic Processing of Materials, The Iron and Steel Institute of Japan, Sendai, 1994, pp. 178–83.

    Google Scholar 

  14. Y. Chino, K. Iwai, and S. Asai: Proc. 3rd Int. Symp. on Electromagnetic Processing of Materials. The Iron and Steel Institute of Japan, Sendai, 2000, pp. 49–54.

    Google Scholar 

  15. H. Lamb: Hydrodynamics, 6th ed., Cambridge University Press, Cambridge, United Kingdom, 1932.

    Google Scholar 

  16. S. Douady: J. Fluid Mech., 1990, vol. 221, pp. 383–409.

    Article  Google Scholar 

  17. J. Miles: J. Fluid Mech., 1992, vol. 245, pp. 485–92.

    Article  Google Scholar 

  18. N. Eustathopoulos, M. Nicholas, and B. Drevet: Pergamon Materials Series, Elsevier, Oxford, United Kingdom, 1999, pp. 165–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrier, D., Fautrelle, Y. & Etay, J. Experimental and theoretical studies of the motion generated by a two-frequency magnetic field at the free surface of a gallium pool. Metall Mater Trans B 34, 669–678 (2003). https://doi.org/10.1007/s11663-003-0038-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-003-0038-5

Keywords

Navigation