Skip to main content
Log in

Thermodynamics of liquid Al-Na alloys determined by using CaF2 solid electrolyte

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The purpose of this work has been to establish activity data on sodium in liquid aluminum-sodium alloys at temperatures applied by the industry in liquid metal refining processes. A coulometric titration technique using a galvanic cell employing CaF2 as a solid electrolyte has enabled measurements to be done under very clean and well-defined conditions over the entire range of compositions from highly diluted up to nearly sodium-saturated solutions. Sodium in liquid aluminum of 99.9999 pct purity is found to exhibit strong negative deviation from Henry’s law, corresponding to a large negative self-interaction coefficient ɛ NaNa as expressed by the equation ɛ NaNa =16,318−(191.1·105 K)·T −1. This behavior is normal for elements, which exhibit strong positive deviation from Raoult’s law and is explained by formation of Na clusters. The activity coefficient at infinite dilution, γ oNa , is expressed by the equation: RT ln γ oNa =86,729−26.237T. The magnitude of γ oNa from this equation agrees with the value predicted from the Miedema’s semiempirical model. Sodium in liquid Al-Si5 pct alloy of 99.9999 pct purity exhibits strong positive deviation from Henry’s law, which is in agreement with earlier investigations of the activity of sodium in liquid Al-Si alloys. The activity coefficient of sodium in pure liquid aluminum at saturation, γ satNa , is expressed by RT ln γ satNa =−67,476+102.33T, which gives for the sodium concentration at saturation x satNa =exp(8115.5/T−12.307). This implies that the solubility of sodium in liquid aluminum at temperatures around the melting point of aluminum is about 10 times higher than previously reported and decreases rapidly with increasing temperature, possibly due to a decreasing stability of Na clusters. Analysis of the experimental conditions used by previous investigators supports these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Hansen: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2001, pp. 29–32, 93, 112–115, 121–122, 131–144, and 160–167.

    Google Scholar 

  2. N.A. Gokcen: Statistical Thermodynamics of Alloys, Plenum Press, New York, NY, 1986, pp. 6–15 and 255–85.

    Google Scholar 

  3. C.H.P. Lupis: Chemical Thermodynamics of Materials, MIT Copy Technology Center, Cambridge, MA, 1983, pp. 152–63 and 461–63.

    Google Scholar 

  4. C.H. Mathewson: Z. Anorg. Chem., 1906, vol. 48, pp. 191–200.

    Article  CAS  Google Scholar 

  5. E. Scheuer: Z. Metallkd., 1933, vol. 25, pp. 139–60.

    CAS  Google Scholar 

  6. E. Scheuer: Z. Metallkd., 1935, vol. 27, pp. 83–85.

    CAS  Google Scholar 

  7. W.L. Fink, L.A. Willey, and H.C. Stumpf: Trans. AIME, 1948, vol. 175, pp. 364–71.

    Google Scholar 

  8. C.E. Ransley and H. Neufeld: J. Inst. Met., 1950, vol. 78, pp. 25–46.

    CAS  Google Scholar 

  9. J.C. Mitchell and C.S. Samis: Trans. TMS-AIME, 1969, vol. 245, pp. 1227–34.

    CAS  Google Scholar 

  10. E.W. Dewing: Metall. Trans., 1970, vol. 1, pp. 1691–94.

    CAS  Google Scholar 

  11. E.W. Dewing: Metall. Trans., 1972, vol. 3, pp. 495–501.

    CAS  Google Scholar 

  12. E.W. Dewing: Metall. Trans. B, 1990 vol. 21B, pp. 285–94.

    CAS  Google Scholar 

  13. G.K. Sigworth and T.A. Engh: Scand. J. Metall., 1982, vol. 11, pp. 143–49.

    CAS  Google Scholar 

  14. J.L. Murray: Bull. Alloy Phase Diagrams, 1983, vol. 44, pp. 407–10.

    Google Scholar 

  15. R.J. Brisley and D.J. Fray: Metall. Trans. B, 1983, vol. 14B, pp. 435–40.

    CAS  Google Scholar 

  16. P.C. Yao and D.J. Fray: J. Appl. Electrochem., 1985, vol. 15, pp. 379–86.

    Article  CAS  Google Scholar 

  17. M. Sun and S. Yang: J. Central-South Inst. Mining Metall., 1992, vol. 23, pp. 99–104.

    CAS  Google Scholar 

  18. A.A. Dubreuil and A.D. Pelton: Light Met., 1985, pp. 1197–1205.

  19. H. Heyer and J.J. Egan: The Int. Terje Østvold Symp. Proc., Røros, Norway, Nov. 2–3, 1998, H.A. Øye and O. Wornes, Trondheim, Norway, 1998, pp. 127–31.

  20. R. Alqasmi and J.J. Egan: Ber. Bunsenges Phys. Chem., 1983, vol. 87, pp. 815–17.

    CAS  Google Scholar 

  21. R. Alqasmi and J.J. Egan: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1025–27.

    CAS  Google Scholar 

  22. J.J. Egan: High Temp. Sci., 1985, vol. 19, pp. 111–25.

    CAS  Google Scholar 

  23. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley: Selected Values of the Thermodynamic Properties of the Elements, ASM, Cleveland, OH, 1973, p. 332.

    Google Scholar 

  24. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM G1-90 (Method C.1.1), ASTM, Philadelphia, PA, 1994, pp. 18.

  25. A.R. Miedema, F.R. de Boer, and P.F. de Chatel: J. Phys. F: Met. Phys., 1973, vol. 3, pp. 1558–76.

    Article  CAS  Google Scholar 

  26. A.R. Miedema, F.R. de Boer, and P.F. de Chatel: Physica, 1980, vol. 100B, pp. 1–28.

    Google Scholar 

  27. X. Ding, P. Fan, and W. Wang: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 271–77.

    Article  CAS  Google Scholar 

  28. M.L. Saboungi and T.P. Corbin: J. Phys. F: Met. Phys., 1984, vol. 14, pp. 13–21.

    Article  CAS  Google Scholar 

  29. C. Zener: Thermodynamics in Physical Metallurgy, ASM, Cleveland, OH, 1950, pp. 16–27.

    Google Scholar 

  30. F. Patak: Ph.D. Thesis, Rheinisch-Westfälischen Hochschule, Aachen, 1983, pp. 15–17.

    Google Scholar 

  31. A.S. Kertes: Solubility Data Series. Esters with Water, Pergamon Press, Oxford, 1992, vols. 48–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, S.G., Tuset, J.K. & Haarberg, G.M. Thermodynamics of liquid Al-Na alloys determined by using CaF2 solid electrolyte. Metall Mater Trans B 33, 577–587 (2002). https://doi.org/10.1007/s11663-002-0037-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-002-0037-y

Keywords

Navigation