Skip to main content
Log in

Numerical and experimental study of internal flow field for a carbon fiber tow pneumatic spreader

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional (3-D) mathematical model of a fiber pneumatic spreader was successfully developed in the physical phenomena of the internal flow field by a far-field treatment at boundary conditions. The 3-D numerical analysis was carried out on incompressible fluid flows in the pneumatic spreader by using finite volume method combined with the k-ɛ turbulence model which solves Reynolds-averaged Naiver-Stokes equations. Characteristics of the flow field in the spreader at different service conditions are investigated by velocity and pressure distributions. Comparisons of numerical results with measured velocity and pressure distributions were made to determine the accuracy of the employed method. A good agreement was found in both qualitative and quantitative analysis. Fibers were spread on 1:1-scale model of the pneumatic spreader at various fiber transporting rates and air flow rates. Photography techniques were simultaneously used to record the procedures of fibers spread. The carbon fiber tow was easily spread out at service conditions. The performance was better than prior studies in one-dimensional orifice formulation. The results revealed details of the fiber spreading processes. Agreement among those results validated the assumptions inherent to the computational calculation and gave confidence to more complex geometries as well as flow fields. In other words, the use of numerical analysis in the internal flow field was useful for the fiber pneumatic spreader design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-sectional area

c 1, c 2, and c 1 :

empirical coefficient

E :

empirical coefficient

k :

turbulent kinetic energy

p :

pressure

t :

time

\(\overline {u_i ^\prime u_j ^\prime } \) :

Reynolds stress tensor

u′ i , u′ j :

fluctuation parts of the velocity

u j :

velocity

ū :

average velocity

u + :

scaled velocity

U, V, W :

velocity components

V F :

fiber transported velocity

x, y, z :

Cartesian coordinates

y :

dimensionless distance

ɛ :

turbulent dissipation rate

μ τ :

turbulent viscosity

k :

Von Karman constant

ξ, ζ, η :

curvilinear coordinate

v :

molecular kinematic viscosity

v T :

eddy viscosity

ρ :

density

σ K :

turbulent Prandtl number for k

σ ɛ :

turbulent Prandtl number for ɛ

τ :

shear stress

\(\tilde \tau _{ij} \) :

Reynolds stress tensor

ϕ :

general variable

▽:

del operation

ϑ :

partial derivative

References

  1. F. Delannay, L. Foryen, and A. Deruyttere: J. Mater. Sci., 1987, vol. 22, pp. 1–16.

    Article  CAS  Google Scholar 

  2. R.V. Subramanian and A. Nyberg: J. Mater. Res., 1992, vol. 7 (3), pp. 677–88.

    CAS  ADS  Google Scholar 

  3. Li-Min Zhou, Yiu-Wing-Mai, and Caroline Baillie: J. Mater. Sci., 1994, vol. 29, pp. 5541–50.

    Article  CAS  Google Scholar 

  4. Sunil G. Warrier and Ray Y. Lin: Scripta Metall. Mater., 1993, vol. 29, pp. 1513–18.

    Article  CAS  Google Scholar 

  5. Zhenhia Xia, Yaohe Zhou, Zhiying Mao, and Baolu Shang: Metall. Trans. B, 1992, vol. 23B, pp. 295–302.

    CAS  Google Scholar 

  6. R. Asthana: J. Mater. Sci., 1998, vol. 33, pp. 1959–80.

    Article  CAS  Google Scholar 

  7. G. Leonhardt, E. Kieselstein, H. Podlesak, E. Than, and A. Hofman: Mater. Sci. Eng., 1991, vol. A135, pp. 157–60.

    CAS  Google Scholar 

  8. Andreas Mortensen: Mater. Sci. Eng., 1991, vol. A135, pp. 1–11.

    CAS  Google Scholar 

  9. J.K. Yu, H.L. Li, and B.L. Shang: J. Mater. Sci., 1994, vol. 29, pp. 2641–47.

    Article  CAS  Google Scholar 

  10. D. Huda, M.A. El Baradie, and M.S.J. Hashmi: J. Mater. Processing Technol., 1993, vol. 37, pp. 529–41.

    Article  Google Scholar 

  11. Feng Wu and Jing Zhu: Composites Sci. Technol., 1997, vol. 57, pp. 661–67.

    Article  CAS  Google Scholar 

  12. Susan Abraham, B.C. Pai, K.G. Satyanarayana, and V.K. Vaidyan: J. Mater. Sci., 1999, vol. 25, pp. 2839–45.

    Article  Google Scholar 

  13. S. Abraham, B.C. Pai, and K.G. Satyanaryana: J. Mater. Sci., 1992, vol. 27, pp. 3479–86.

    Article  CAS  Google Scholar 

  14. H.M. Cheng, A. Kitahara, S. Akiyama, K. Kobayashi, and B.L. Zhou: J. Mater. Sci., 1992, vol. 27, pp. 3617–23.

    Article  CAS  Google Scholar 

  15. Yu-Qing Wang and Ben-Liam Zhou: J. Mater. Processing Technol., 1998, vol. 73, pp. 78–81.

    Article  Google Scholar 

  16. R.J. Bobka and L.P. Lowell: Handbook of Composites, vol. 1 - Strong Fibres, W. Watt, and B. V. Perov, eds., Elsevier Science Publisher B.V., 1985, pp. 579–80.

  17. D. Clark, N.J. Wadsworth, and W. Watt: Handbook of Composites, vol. 1 - Strong Fibres, W. Watt, and B. V. Perov, eds., Elsevier Science Publisher B.V., 1985, pp. 579–80.

  18. Haining Yang, Mingyuan Gu, Weiji Jiang, and Guoding Zhang: J. Mater. Sci., 1996, vol. 31, pp. 1903–07.

    Article  CAS  Google Scholar 

  19. Clare G. Daniels: U.S. Patent No. 3,873,389, Philco-Ford Corp., Philadelphia, PA, El Toro, CA, Mar. 25, 1975.

  20. Paul E. McMahon, Tai-Shung Chung, and Lincoln Ying: U.S. Patent No. 4,871,491, BASF Structural Materials, Inc., Charlotte, N.C., Oct. 3, 1989.

  21. John N. Hall: U.S. Patent No. 3,704,485, Hercules Incorporated, Wilmington, DE, Brookside Park, DE, Dec. 5, 1972.

  22. Robert M. Baucom and Joseph M. Marchello: Sampe Q., 1990, July, pp. 14–19.

  23. J.F. Tompson: Numerical Grid Generation, Elsevier, New York, NY, 1982.

    Google Scholar 

  24. E.B. Launder and B.D. Spalding: Mathematical Models of Turbulence, Academic Press, London, 1972.

    MATH  Google Scholar 

  25. CFX-F3D Version 4.1 User Manual, Harwell Laboratory, Oxfordshire, U.K., 1995, Oct.

  26. G.J. Sturgess, S.A. Sayed, and K.R. McManus: Int. J. Turbo Jet Engines, 1986, vol. 33, pp. 43–55.

    Google Scholar 

  27. J.K. Eaton and J.P. Johnston: AIAA J., 1981, vol. 19 (9), pp. 1093–1100.

    Google Scholar 

  28. M.C. Rhie and L.W. Chow: AIAA J., 1983, vol. 21, pp. 1525–32.

    Article  MATH  Google Scholar 

  29. S.V. Patankar and B.D. Spalding: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1787–92.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.C., Chao, C.G. Numerical and experimental study of internal flow field for a carbon fiber tow pneumatic spreader. Metall Mater Trans B 32, 329–339 (2001). https://doi.org/10.1007/s11663-001-0056-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0056-0

Keywords

Navigation