Skip to main content
Log in

Thermodynamic behavior of Na2O-B2O3 melt

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The activity of Na2O in a Na2O-B2O3 melt was measured at 1373 K by a chemical equilibration technique to understand the thermodynamic behavior of this slag system. Also, the activity coefficient of Na in Ag was preliminarily measured as fundamental thermodynamic data, to estimate the activity of Na2O in the slag. Sodium in the silver melt, within the present concentration range, exhibits the Henrian behavior, and the Henrian activity coefficient of Na in Ag (γ 0 Na) is estimated to be 37.5 at 1373 K, indicating a positive deviation from ideality. The activity of Na2O in the slag varies from 1.86×10−6 to 4.99×10−4 when its content is increased from 11.0 to 64.9 mol pct; this indicates a significant negative deviation from ideality. The excess stability does not exhibit any pronounced peak, despite being drastically changed at specific slag compositions. Comparing the molar Gibbs free energy of mixing in various binary slags, Na2O was considered to be more basic than BaO (CaO) was, followed next by MgO; also, P2O5 would be significantly more acidic than SiO2 would be, followed next by B2O3. Comparing the heats of formation of solid compounds in binary slags, the larger the differences in the electronegativity values between slag components, the more the relative ionic characters of the melts seemed to be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press, London, 1974, vol. 1, pp. 132–40.

    Google Scholar 

  2. D.J. Min: J. Kor. Inst. Met. Mater., 1995, vol. 33, pp. 1212–18.

    CAS  Google Scholar 

  3. F. Müller and S. Demirok: Glastech. Ber., 1989, vol. 62, pp. 142–49.

    Google Scholar 

  4. B.K.D.P. Rao and D.R. Gaskell: Metall. Trans. B, 1981, vol. 12B, pp. 469–77.

    CAS  Google Scholar 

  5. X. Huang, T. Fujisawa, and C. Yamauchi: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 133–37.

    CAS  Google Scholar 

  6. X. Huang, K. Asano, T. Fujisawa, Z. Sui, and C. Yamauchi: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1360–65.

    CAS  Google Scholar 

  7. H. Fujiwara, H. Moriya, and M. Iwase: Trans. ISS I&SM, 1991, Jan., pp. 43–49.

  8. F. Tsukihashi, A. Werme, F. Matsumoto, A. Kasahara, M. Yukinobu, T. Hyodo, S. Shiomi, and N. Sano: Proc. 2nd Int. Symp. Metallurgical Slags and Fluxes, Lake Tahoe, NV, No. 11–14, (1984), (TMS-AIME), Warrendale, PA, 1984, pp. 89–106.

    Google Scholar 

  9. J.J. Pak, K. Ito, and R.J. Fruchan: Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 318–23.

    CAS  Google Scholar 

  10. W.H.V. Niekerk and R.J. Dippenaar: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 59–65.

    Google Scholar 

  11. H Itoh, A. Sasahira, T. Maekawa, and T. Yokokawa: J. Chem. Soc. Faraday. Trans. I, 1984, vol. 80, pp. 473–87.

    Article  CAS  Google Scholar 

  12. J.H. Park and D.J. Min: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 689–94.

    Article  CAS  Google Scholar 

  13. J.H. Park and D.J. Min: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1045–52.

    Article  CAS  Google Scholar 

  14. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 1–24.

    Google Scholar 

  15. L.S. Darken: Trans. TMS-AIME, 1967, vol. 239, pp. 90–96.

    CAS  Google Scholar 

  16. C.H.P. Lupis: Chemical Thermodynamics of Materials, Prentice-Hall, New York, NY, 1993, pp. 152–66.

    Google Scholar 

  17. L.S. Darken and R.W. Gurry: Physical Chemistry of Metals, McGraw-Hill, New York, NY, 1953, pp. 258–66.

    Google Scholar 

  18. L.S. Darken: Trans. TMS-AIME, 1967, vol. 239, pp. 80–89.

    CAS  Google Scholar 

  19. M. Kowalski, P.J. Spencer, and D. Neuschütz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 39–98.

    Google Scholar 

  20. F. Tsukihashi and N. Sano: Tetsu-to-Hagané, 1985, vol. 71, pp. 815–22.

    CAS  Google Scholar 

  21. C.T. Huang and R.Y. Lin: Metall. Trans. B, 1989, vol. 20B, pp. 197–204.

    CAS  Google Scholar 

  22. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press, London, 1974, vol. 1, pp. 247–57.

    Google Scholar 

  23. S. Ban-ya, M. Hino, and H. Takezoe: Proc. 2nd Int. Symp. Metallurgical Slags and Fluxes, Lake Tahoe, NV. Nov. 11–14, (1984), TMS-AIME, Warrendale, PA, pp. 395–416.

    Google Scholar 

  24. O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry, 5th ed., Pergamon Press, Oxford, United Kingdom, 1979, pp. 192–209.

    Google Scholar 

  25. I. Barin: Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft mbH, Weinheim, 1989.

    Google Scholar 

  26. R.G. Ward: An Introduction to the Physical Chemistry of Iron and Steelmaking, Edward Arnold, London, 1962, pp. 9–16.

    Google Scholar 

  27. A.F. Wells: Structural Inorganic Chemistry, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1950, pp. 28–39.

    Google Scholar 

  28. D.J. Min: Ph.D. Thesis, The University of Tokyo, Tokyo, 1988.

    Google Scholar 

  29. N. Sano, W.K. Lu, and P.V. Riboud: Advanced Physical Chemistry for Process Metallurgy, Academic Press, San Diego, CA, 1997, pp. 45–51.

    Google Scholar 

  30. J.H. Park and D.J. Min: J. Kor. Inst. Met. Mater., 1999, vol. 37, pp. 1124–30.

    CAS  Google Scholar 

  31. J.H. Park and D.J. Min: Mater. Trans., JIM, 2000, vol. 41, pp. 425–28.

    CAS  Google Scholar 

  32. H.S. Song, D.S. Kim, D.J. Min, and P.C.H. Rhee: Proc. 5th Int. Conf. Molten Slags, Fluxes, and Salts ′97, Sydney, Jan. 5–8, (1997), ISS-AIME, Warrendale, PA, 1997, pp. 583–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Min, D.J. Thermodynamic behavior of Na2O-B2O3 melt. Metall Mater Trans B 32, 297–303 (2001). https://doi.org/10.1007/s11663-001-0052-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0052-4

Keywords

Navigation