Skip to main content
Log in

Largest-extreme-value distribution analysis of multiple inclusion types in determining steel cleanliness

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

There is the need for new inclusion rating methods able to assess the cleanliness of modern steel and to predict the characteristic size of maximum defects in a component. These critical tasks can be extremely difficult, because of the presence of different inclusion types. Therefore, new statistical tools have to be developed for addressing these problems. A new method for the analysis of extreme defects is proposed in this article and is successfully applied to different steels containing multiple inclusions. In particular, the analysis, which allows the assessment of the relative density of the different inclusions, is based on inclusion samplings carried out on different control areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Gladman: Ironmaking and Steelmaking, 1992, vol. 19 (6), pp. 457–63.

    CAS  Google Scholar 

  2. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Yokendo Ltd., Tokyo, 1993.

    Google Scholar 

  3. Y. Murakami, T. Toryiama, and E.M. Coudert: J. Testing Eval., 1994, vol. 22, pp. 318–26.

    Article  CAS  Google Scholar 

  4. Y. Murakami: J. Res. Nat. Standard, 1994, vol. 99, pp. 345–51.

    CAS  Google Scholar 

  5. L. Barnard, R.F. Brooks, P.N. Quested, and K.C. Mills: Ironmaking and Steelmaking, 1993, vol. 20, pp. 344–49.

    CAS  Google Scholar 

  6. J. Cybo: J. Steel Res., 1995, vol. 66, pp. 167–71.

    CAS  Google Scholar 

  7. T. Lund and K. Torresvol: Bearing Steels into the 21st Century, ASTM STP 1327 J.J.C. Hoo and W.B. Green, eds., ASTM, Philadelphia, PA, 1998, pp. 27–38.

    Google Scholar 

  8. G. Auclair, F. Ruby-Meyer, R. Meilland, and P. Rocabois: Bearing Steels into the 21st Century, ASTM STP 1327, J.J.C. Hoo and W.B. Green, eds., ASTM, Philadelphia, PA, pp. 39–54.

  9. Y. Wanibe, T. Itoh, K. Umezawa, H. Nagahama, and Y. Nori: J. Steel Res., 1995, vol. 66, pp. 172–77.

    CAS  Google Scholar 

  10. E.J. Gumbel: Statistics of Extremes, Columbia University Press, New York, NY, 1957.

    Google Scholar 

  11. Nireco: Patent No. 1999-230961, Tokyo, 1997.

  12. H. Narai, S. Niizeki, and T. Abe: Proc. CAMP-ISIJ, Iron and Steel Institute of Japan, Hiroshima, 1991, vol. 4, pp. 1179–81.

    Google Scholar 

  13. S. Beretta and Y. Murakami: Fatigue Fract. Eng. Mater. Struct., 1998, vol. 21, pp. 1049–65.

    Article  CAS  Google Scholar 

  14. Y. Murakami and S. Beretta: Extremes, 1999, vol. 2, pp. 123–47.

    Article  Google Scholar 

  15. T.B. Lund, S.A. Johannson, and L.J.P. Olund: Bearing Steels into the 21st Century, ASTM STP 1327, J.J.C. Hoo and W.B. Green, ds., ASTM, Philadelphia, PA, pp. 124–30.

  16. Y. Murakami, M. Takada, and T. Toriyama: Int. J. Fatigue, 1998, vol. 16, pp. 661–67.

    Article  Google Scholar 

  17. R.D. Reiss and M. Thomas: Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, 1997.

    Google Scholar 

  18. C.W. Anderson: University of Sheffield, Sheffield, United Kingdom, unpublished research, 1998.

  19. G. Shi, H.V. Atkinson, C.M. Sellars, and C.W. Anderson: Acta Mater., 1999, vol. 47, pp. 1455–68.

    Article  CAS  Google Scholar 

  20. Y. Uemura and Y. Murakami: Trans. JSME, 1990, vol. 56, pp. 162–67.

    Google Scholar 

  21. R. Takahashi and M. Sibuya: Ann. Inst. Stat. Math., 1996, vol. 48, (1), pp. 127–44.

    Article  Google Scholar 

  22. J.F. Lawless: Statistical Models and Methods for Lifetime Data, J. Wiley and Sons, New York, NY, 1982.

    Google Scholar 

  23. K. Furumura, T. Abe, and Y. Murakami: Bearing Steels into the 21st Century, ASTM STP 1327, J.J.C. Hoo and W.B. Green, eds., ASTM, Philadelphia, PA, pp. 249–64.

  24. Y Kusano: Proc. CAMP-ISIJ, Iron and Steel Institute of Japan, Waseda, 1997, vol. 10, pp. 702–04.

    Google Scholar 

  25. T. Seki: Aichi Steel Works Ltd., Tokai-shi, Japan, unpublished research, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beretta, S., Murakami, Y. Largest-extreme-value distribution analysis of multiple inclusion types in determining steel cleanliness. Metall Mater Trans B 32, 517–523 (2001). https://doi.org/10.1007/s11663-001-0036-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0036-4

Keywords

Navigation