Skip to main content
Log in

Rate of interfacial reaction between liquid iron oxide and CO-CO2

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The interfacial reaction rate between liquid iron oxide and CO-CO2 was determined using a thermogravimetric technique. The measured rates were controlled by the chemical reactions at the gas-slag interface. The apparent first-order rate constant, for the oxidation of liquid iron oxide by CO2, decreased sharply with the equilibrium CO2/CO ratio. The rate of reduction of liquid iron oxide by CO showed a slight increase with the oxidation state of the melt. At 1773 K, the apparent first-order rate constants are given by k=4.0×10−5(CO2/CO)−0.8 and k=4.0 × 10−5(CO2/CO)0.18 mol cm−2 s−1 atm−1 for the oxidation and reduction, respectively. The addition of basic oxides, such as BaO and CaO, resulted in an increased reaction rate, while the addition of acidic oxide, such as SiO2, decreased the rate. The results are consistent with the dissociation or formation of the CO2 molecule, involving the transfer of two charges, being the rate controlling mechanism of the reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fuwa: Trans. Jpn. Inst. Met., 1988, vol. 29, pp. 353–64.

    CAS  Google Scholar 

  2. M.W. Davies, G.S.F. Hazeldean, and P.N. Smith: in Physical Chemistry of Process Metallurgy: the Richardson Conf., J.H.E. Jeffes and R.J. Tait, eds., The Institute of Mining and Metallurgy, London, 1973, pp. 95–107.

    Google Scholar 

  3. E.W. Mulholland, G.S.F. Hazeldean, and M.W. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–39.

    CAS  Google Scholar 

  4. K. Ishii and Y. Kashiawaya: 3rd Int. Conf. on Molten Slags and Fluxes, Glasgow, United Kingdom, The Institute of Metals, London, 1989, pp. 142–45.

    Google Scholar 

  5. Y. Ogawa and N. Tokumitsu: Proc. 6th Int. Iron and Steel Congr., Nagoya, Japan, Iron Steel Inst. Jpn., Tokyo, 1990, pp. 147–52.

    Google Scholar 

  6. S. Hara and K. Ogino: Tetso-to-Hagané, 1990, vol. 76, pp. 360–67.

    CAS  Google Scholar 

  7. D.J. Min and R.J. Fruehan: Metall. Trans. B, 1992, vol. 23B, pp. 29–37.

    CAS  Google Scholar 

  8. B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 717–30.

    CAS  Google Scholar 

  9. K. Kato, Y. Sasaki, and T. Soma: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, pp. 532–33.

    CAS  Google Scholar 

  10. F. Tsukihashi, K. Kato, K. Otsuka, and T. Soma: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 688–95.

    Google Scholar 

  11. T. Nagasaka, Y. Iguchi, and S. Ban-ya: 5th Int. Iron and Steel Congr.: Process Technology Proc., ISS, Washington, DC, 1986, vol. 6 pp. 669–78.

    Google Scholar 

  12. X. Yang, D. Wang, D. Xuan, and W. Tang: Huagong Yejin (Eng. Chem. Metall.), 1993, vol. 14, pp. 195–98.

    Google Scholar 

  13. K. Schwerdtfeger and K. Klein: Ironmaking and Steelmaking, 1977, vol. 4, pp. 45–50.

    CAS  Google Scholar 

  14. Y. Sasaki, S. Hara, D.R. Gaskell, and G.R. Belton: Metall. Trans. B, 1984, vol. 15B, pp. 563–71.

    CAS  Google Scholar 

  15. C. Yan and F. Oeters: Steel Res., 1994, vol. 65, pp. 355–61.

    CAS  Google Scholar 

  16. G.R. Belton: Advanced Physical Chemistry for Process Metallurgy, Academic Press Ltd., New York, NY, 1997, pp. 183–218.

    Google Scholar 

  17. Y. Li: Ph.D. Thesis, University of Newcastle, NSW, Australia, 1999.

    Google Scholar 

  18. S. Ban-Ya, A. Chiba, and A. Hikosaka: Tetsu-to-Hagané, 1980, vol. 66, pp. 1484–93.

    CAS  Google Scholar 

  19. M. Iwase, N. Yamada, E. Ichise, and H. Akizuli: Arch. Eisenhuttenwes., 1984, vol. 55, pp. 415–20.

    CAS  Google Scholar 

  20. H. Fujita, Y. Iritani, and S. Maruhashi: Tetsu-to-Hagané, 1968, vol. 54, pp. 359–70.

    CAS  Google Scholar 

  21. E.T. Turkdogan and J. Pearson: J. Iron Steel Inst., 1953, vol. 173, pp. 217–23.

    CAS  Google Scholar 

  22. I.C. Smith and H.B. Bell: Trans. Inst. Mining Metall., Sect. C, 1970, vol. 79, pp. 253–58.

    CAS  Google Scholar 

  23. L.S. Darken and R.W. Gurry: J. Am. Chem. Soc., 1946, vol. 68, pp. 798–816.

    Article  CAS  Google Scholar 

  24. C. Wanger and E. Koch: Z. Phys. Chem. B, 1936, vol. 32B, p. 439.

    Google Scholar 

  25. I. Bransky and D.S. Tannhauser: Trans. TMS-AIME, 1967, vol. 239, pp. 75–80.

    CAS  Google Scholar 

  26. M.S. Seltzer and A.Z. Hed: J. Electrochem. Soc.: Solid State Sci., 1970, vol. 117, pp. 815–18.

    Google Scholar 

  27. H. Inouye, J.W. Tomlinson, and J. Chipman: Trans. Faraday Soc., 1953, vol. 49, pp. 796–801.

    Article  CAS  Google Scholar 

  28. E.A. Dancy and G.J. Derge: Trans. TMS-AIME, 1966, vol. 236, pp. 1642–48.

    CAS  Google Scholar 

  29. J. Henderson, R.G. Hudson, R.G. Ward, and G. Derge: Trans. TMS-AIME, 1961, vol. 221, pp. 807–11.

    CAS  Google Scholar 

  30. Y. Waseda and Y. Shiraishi: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 783–84.

    CAS  Google Scholar 

  31. Y. Waseda and J.M. Toguri: Metall. Trans. B, 1978, vol. 9B, pp. 595–601.

    CAS  Google Scholar 

  32. E.T. Turkdogan and J.V. Vinters: Metall. Trans., 1972, vol. 3, pp. 1561–74.

    CAS  Google Scholar 

  33. H.K. Kohl and B. Marincek: Arch. Eisenhüttenwes., 1965, vol. 36, pp. 851–59.

    CAS  Google Scholar 

  34. J. Gerlach, H. Prost, and D. Neuschütz: Arch. Eisenhüttenwes., 1965, vol. 36, pp. 543–47.

    CAS  Google Scholar 

  35. T. Inami and K. Suzuki: Tetsu-to-Hagané, 1994, vol. 80, pp. 699–704.

    CAS  Google Scholar 

  36. K. Hauffe and H.Z. Pfeiffer: Z. Metallkd., 1953, vol. 44, pp. 27–36.

    CAS  Google Scholar 

  37. F.S. Pettit and J.B. Wagner: Acta Metall., 1964, vol. 12, pp. 35–40.

    Article  CAS  Google Scholar 

  38. W.W. Smeltzer, L.A. Morris, and R.C. Logani: Can. Metall. Q., 1970, vol. 9, pp. 513–19.

    CAS  Google Scholar 

  39. S.K. El-Rahaiby, Y. Sasaki, D.R. Gaskell, and G.R. Belton: Metall. Trans. B, 1986, vol. 17B, pp. 307–16.

    CAS  Google Scholar 

  40. K. Huffe: Adv. Catal. Relat. Subj., 1955, vol. 7, pp. 213–57.

    Google Scholar 

  41. T.H. Wolkenstein: Adv. Catal. Relat. Subj., 1960, vol. 12, pp. 189–264.

    Google Scholar 

  42. C. Wagner: Adv. Catal. Relat. Subj., 1970, vol. 21, pp. 323–81.

    Article  CAS  Google Scholar 

  43. U. Din-Fen, A.F. Vishkarev, and V.I. Yavoiskii: Izv. Vyssh. Ucheb. Zaved. Chern. Met., 1963, No. 1, pp. 27–33.

  44. S.I. Popel and O.A. Esin: Z. Fiz. Khim., 1956, vol. 30, pp. 1193–1201.

    CAS  Google Scholar 

  45. P.K. Bhattacharyya and D.R. Gaskell: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 139–41.

    CAS  Google Scholar 

  46. E. Oktay: 7th Int. Metallurgy and Materials Congr., Ankara, Turkey, UCTEA, Ankara, 1993, vol. 1, pp. 379–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Geoffrey Belton Memorial Symposium,” held in January 2000, in Sydney, Australia, under the joint sponsorship of ISS and TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Lucas, J.A., Evans, G.M. et al. Rate of interfacial reaction between liquid iron oxide and CO-CO2 . Metall Mater Trans B 31, 1049–1057 (2000). https://doi.org/10.1007/s11663-000-0080-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0080-5

Keywords

Navigation