Skip to main content
Log in

Measurements, simulations, and analyses of instantaneous heat fluxes from solidifying steels to the surfaces of twin roll casters and of aluminum to plasma-coated metal substrates

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Using implanted thermocouples, and an inverse heat-transfer technique, heat fluxes and associated heat-transfer coefficients during the solidification of steel in a pilot scale 0.6-m-diameter twin roll caster, whose copper contact surfaces had been treated with a propriety coating, were measured. It was found that heat fluxes during initial contact of liquid steel with the rolls were low, rising to maximum values of about 5 to 6 MW per square meter halfway down the sump of liquid steel, but then diminishing toward zero as the strip approached the roll nip. These results corresponded to roll speeds of some 7 m/min, strip thicknesses of 7 mm, and a roll separating force of 20 kN. For higher speeds and thinner strip, a secondary peak in the heat flux was observed. Associated microstructures revealed acicular ferrite, large prior austenite grains, and secondary dendrite arm spacings in keeping with measurements.

In parallel experiments simulating a single belt horizontal caster, heat fluxes from strips of various aluminum alloys to coated and uncoated steel and copper substrates were measured. Under these conditions, peak heat fluxes were recorded during the period of initial contact, and depending on the coating characteristics, these reduced to a lower plateau before declining, or continuously decreased toward zero, corresponding to complete solidification of the strip.

A theoretical analysis of the maximum heat-transfer rates that can be expected given perfect thermal contact of metal with the rolls, and its moderations by gas films, and substrate coatings illustrates the dominant role of the gas film and the need for dynamic heat flux measurements for quantitative modeling of fluid flows and solidification phenomena in thin strip casting operations. A model for air gap formation is proposed, based on viscous laminar flows within the gas films. Predicted thicknesses are in reasonable accord with those deduced on the basis of heat flux measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Holmberg: Steel Res., 1998, vol. 68, pp. 22–27.

    Google Scholar 

  2. A. Garcia and M. Prates: Metall. Trans. B, 1978, vol. 9B, pp. 449–57.

    CAS  Google Scholar 

  3. A. Garcia, T.W. Clyne, and M. Prates: Metall. Trans. B, 1979, vol. 10B, pp. 85–92.

    CAS  Google Scholar 

  4. J. Lipton, A. Garcia, and W. Heinemann: Arch. Eisenhúttenwes., 1982, vol. 53, pp. 469–73.

    CAS  Google Scholar 

  5. M. Prates and H. Biloni: Metall. Trans. B, 1972, vol. 3B, pp. 1501–10.

    Google Scholar 

  6. J.V. Beck: Int. J. Heat Mass Transfer, 1970, vol. 13, pp. 703–16.

    Article  Google Scholar 

  7. K. Ho and R.D. Pehlke: AFS Trans., 1983, pp. 689–98.

  8. K. Ho and R.D. Pehlke: AFS Trans., 1984, pp. 587–97.

  9. K. Ho and R.D. Pehlke: Metall. Trans. B, 1985, vol. 6B, pp. 585–94.

    Google Scholar 

  10. Y. Nishida, W. Droste, and S. Engler: Metall. Trans. B, 1986, vol. 17B, pp. 883–44.

    Google Scholar 

  11. T.S.P. Kumar and K.N. Prabhu: Metall. Trans. B, 1991, vol. 22B, pp. 717–27.

    CAS  Google Scholar 

  12. M. Krishnan and D.G.R. Sharma: AFS Trans., 1994, vol. 102, pp. 769–74.

    Google Scholar 

  13. N.A. El-Mahallawy and A.M. Assar: J. Mater. Sci. Lett., 1988, vol. 7, pp. 205–08.

    Article  CAS  Google Scholar 

  14. N.A. El-Mahallawy and A.M. Assar: J. Mater. Sci., 1991, vol. 26, pp. 1729–33.

    Article  CAS  Google Scholar 

  15. A.M. Assar: J. Mater. Sci. Lett., 1992, vol. 11, pp. 601–06.

    Article  CAS  Google Scholar 

  16. N.A. El-Mahallawy, M.A. Taha, A.M. Assar, and R.M. Hamouda: Mater. Sci. Technol., 1993, vol. 9, pp. 691–97.

    CAS  Google Scholar 

  17. A.M. Assar: Mater. Sci. Technol., 1997, vol. 13, pp. 701–03.

    Google Scholar 

  18. J.C. Hwang, H.T. Chuang, S.H. Jong, and W.S. Hwang: AFS Trans., 1994, pp. 877–83.

  19. P. Schmidt: Mater. Sci. Eng., 1993, vol. A173, pp. 271–74.

    Google Scholar 

  20. F. Lau, W.B. Lee, S.M. Xiong, and B.C. Liu: J. Mater. Proc. Technol., 1998, vol. 79, pp. 25–29.

    Article  Google Scholar 

  21. S.P. Mehrotra, A. Chakravarty, and P. Singh: Steel Res., 1997, vol. 68, pp. 201–08.

    CAS  Google Scholar 

  22. W.D. Griffiths: Metall. Trans. B, 1999, vol. 30B, pp. 473–82.

    CAS  Google Scholar 

  23. K.H. Spitzer: Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1969–74.

    Article  Google Scholar 

  24. S.J. Chen, R.C. Ren, and A.A. Tseng: J. Mater. Proc. Manufacturing Sci., 1995, vol. 3, pp. 373–86.

    CAS  Google Scholar 

  25. P.G.Q. Netto, R.P. Tavares, and R.I.L. Guthrie: Light Met., 1997, pp. 393–407.

  26. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe: Metall. Mater. Trans. B, 1995, vol. 26B, pp 361–82.

    CAS  Google Scholar 

  27. K.N. Prabhu, S.A. Kumar, and N. Venkataraman: AFS Trans., 1994, pp. 827–32.

  28. E. Velasco, J. Talamantes, S. Cano, S. Valtierra, J.F. Mojica, and R. Colas: Metall. Trans. B, 1999, vol. 30B, pp. 773–78.

    Article  CAS  Google Scholar 

  29. S.J. Chen, R.C. Ren, and A.A. Tseng: J. Mater. Proc. Manufacturing Sci. 1995, vol. 3, pp. 373–86.

    CAS  Google Scholar 

  30. L. Strezov and L. Herbertson: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 959–66.

    CAS  Google Scholar 

  31. R.P. Tavares, M. Isac, and R.I.L. Guthrie: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 1353–61.

    CAS  Google Scholar 

  32. K.A. Woodbury: Int. J. Heat Mass Transfer, 1990, vol. 33 (12), p. 2641.

    Article  CAS  Google Scholar 

  33. R.P. Tavares: Ph.D. Thesis, McGill University, Montreal, 1997.

    Google Scholar 

  34. J.V. Beck, B. Blackwell, and C.R. St. Clair, Jr.: Inverse Heat Conduction. Ill-Posed Problems, John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  35. W. Reichelt, U. Urlau, R. Nystrom, and E. Burstorm: Proc. Metec 94, 2nd Eur. Conf. on Continuous Casting, Düsseldorf, 1994.

  36. P.G.Q. Netto, R.P. Tavares, and R.I.L. Guthrie: Internal Report McGill University, Montreal, 1996.

  37. C. Jefferies: Ph.D. Thesis, McGill University, Montreal, 1995, p. 1.

    Google Scholar 

  38. G.-X. Wang and E.F. Matthys: Trans. ASME — J. Heat Transfer, 1996, vol. 118, pp. 157–63.

    CAS  Google Scholar 

  39. T. Mizoguchi, K. Miyazawa, and Y. Ueshima: Tetsu-to-Hagané, 1994, vol. 80 (1), pp. 36–41.

    Google Scholar 

  40. T. Yamauchi, T. Nakanori, M. Hasegawa, T. Yabuki, and N. Ohnishi: Trans. Iron Steel Inst. Jpn., 1988, vol. 28 (1), pp. 23–27.

    CAS  Google Scholar 

  41. A.C. Rapier, T.M. Jones, and J.E. Mcintosh: Int. J. Heat Mass Transfer, 1963, vol. 6, pp. 397–416.

    Article  CAS  Google Scholar 

  42. M.C. Flemings: Metall. Trans. B, 1991, vol. 22B, pp. 269–93.

    CAS  Google Scholar 

  43. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1983.

    Google Scholar 

  44. G.-X. Wang and E.F. Matthys: in Melt Spinning. Strip Casting and Slab Casting, E.F. Matthys and W.G. Truckner, eds., TMS, Warrendale, PA, 1996, pp. 205–36.

    Google Scholar 

  45. B. Farouk, D. Apelian, and Y.G. Kim: Metall. Trans. B, 23B (1992), 477–92.

    CAS  Google Scholar 

  46. H. Todoroki, R. Lertarom, A.W. Cramb, and T. Suzuki: ISS Trans., 1999, Apr., pp. 57–71.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Geoffrey Belton Memorial Symposium,” held in January 2000, in Sydney, Australia, under the joint sponsorship of ISS and TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthrie, R.I.L., Isac, M., Kim, J.S. et al. Measurements, simulations, and analyses of instantaneous heat fluxes from solidifying steels to the surfaces of twin roll casters and of aluminum to plasma-coated metal substrates. Metall Mater Trans B 31, 1031–1047 (2000). https://doi.org/10.1007/s11663-000-0079-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0079-y

Keywords

Navigation