Skip to main content

A monte carlo simulation study of dissolution of graphite in iron-carbon melts

Abstract

A Monte Carlo (MC) simulation study has been carried out on the dissolution of graphite in Fe-C melts in the temperature range 1300 °C to 1600 °C. Atoms in graphite and iron melt were arranged on a rigid graphitic hexagonal lattice and interactions were assumed to be pairwise and short ranged. This hexagonal model of iron melts has been validated using saturation solubility of C in iron melts. The aim of this study was to investigate the effect of the atomic nature of the interfacial region on graphite dissolution. Using canonical ensemble, simulations were carried out as a function of carbon content of the melt, temperature, interface orientation, and surface roughness. A contact between graphite and melt resulted in the formation of a broad interfacial region containing high concentrations of C and Fe atoms. During the initial stages of contact, strong C-C bonds in the basal plane hinder the dissociation of C atoms and affect the overall dissolution rate. As dissolution proceeds, interfacial effects become less important and dissolution is controlled by mass transfer in the melt. Interfacial effects do not play an important role across prismatic planes. The simulation results also show an excellent agreement with the basic trends in experimental results on graphite dissolution.

This is a preview of subscription content, access via your institution.

References

  1. R. Hauk: South African Institute of Mining and Metallurgy COREX Symp., 1990, pp. 21–34.

  2. J.V. Keogh, G.J. Hardie, D.K. Philip, and P.D. Burke: AIME 50th Ironmaking Conf. Proc., Washington, DC, 1991, pp. 635–49.

  3. B.L. Cusack, G.J. Hardie, and P.D. Burke: Eur. Ironmaking Congr., Glasgow, 1991.

  4. G.J. Hardie, I.F. Taylor, J.M. Ganser, J.K. Wright, and C.W. Boon: Savard-Lee Symp. Proc., Montreal, 1992.

  5. S. Orsten and F. Oeters: Process Technology Conf. Proc., 1988, pp. 31–42.

  6. J.K. Wright and I.F. Taylor: Iron Steel Inst. Jpn. Int., 1993, vol. 33 (5), pp. 529–38.

    CAS  Google Scholar 

  7. M.B. Mourao, G.G. Krishna Murthy, and J.F. Elliott: Metall. Trans. B, 1993, vol. 24, pp. 629–37.

    Google Scholar 

  8. V. Sahajwalla, I.F. Taylor, and J.K. Wright: AIME 52nd Ironmaking Conf. Proc., 1993, pp. 355–65.

  9. M.L.F. Coller, V. Sahajwalla, I.F. Taylor, and J.K. Wright: 6th AusIMM Extractive Metallurgy Conf. Proc., 1994, pp. 287–94.

  10. R.G. Olsson, V. Komp, and T.F. Perzak: Trans. TMS-AIME, 1966, vol. 236, pp. 426–29.

    CAS  Google Scholar 

  11. M. Kosaka and S. Minowa: Trans. Iron Steel Inst. Jpn., 1968, vol. 6 (8), pp. 392–400.

    Google Scholar 

  12. S.O. Ericsson and P.O. Melberg: Scand. J. Metall., 1981, vol. 10, pp. 15–18.

    CAS  Google Scholar 

  13. V.A. Grigoryan and V.P. Karshin: Russ. Metall., 1972, pp. 57–59.

  14. R. Olivares: Ph.D. Thesis, The University of NewCastle, NewCastle, 1997.

    Google Scholar 

  15. S. Orsten and F. Oeters: Process Technology Conf. Proc., 1986, vol. 6 (3), pp. 143–55.

    Google Scholar 

  16. R. Khanna and V. Sahajwalla: Phys. Status Solidi B, 1999, vol. 213, pp. 47–58.

    Article  CAS  Google Scholar 

  17. C. Wu and V. Sahajwalla: Metall. Mater. Trans. B, 1998, vol. 29, pp. 471–77.

    Google Scholar 

  18. C. Wu: Ph.D. Thesis, The University of New South Wales, Sydney, 1998.

    Google Scholar 

  19. L.H. Van Vlack: Elements of Materials Science and Engineering, 6th ed., Edison-Wesley Publishing Co., New York, NY, 1989, pp. 133–34.

    Google Scholar 

  20. S.H. Lim and I.K. Kang: J. Kor. Inst. Met. Mater., 1992, vol. 30 (8), pp. 1005–14.

    CAS  Google Scholar 

  21. A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: Metall. Trans. B, 1981, vol. 12B, pp. 745–54.

    Google Scholar 

  22. A.S. Jordan: in Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, Y.A. Chang and J.F. Smith, eds., TMS-AIME, New York, NY, 1979, pp. 100–02.

    Google Scholar 

  23. R. Khanna and V. Sahajwalla: Scripta Mater., 1999, vol. 40 (11), pp. 1289–94.

    Article  CAS  Google Scholar 

  24. J. Chipman: Metall. Trans., 1972, vol. 3, pp. 55–64.

    CAS  Google Scholar 

  25. V. Sahajwalla and R. Khanna: Acta Mater., 1999, vol. 47 (3), pp. 793–800.

    Article  CAS  Google Scholar 

  26. T. Mori, K. Fujimara, and H. Kanoshima: Mem. Fac. Eng. Kyoto Univ., 1963, vol. 25, pp. 63–72.

    Google Scholar 

  27. M. Ohtani and N.A. Gokcen: Trans. TMS-AIME, 1958, vol. 218, pp. 380–89.

    Google Scholar 

  28. A.A. Vertman and V. Samarin: Izv. Akad. Nauk SSSR, Metall., 1965, vol. 1, pp. 29–33.

    Google Scholar 

  29. Y. Shigeno, M. Tokuda, and M. Ohtani: Trans. Jpn. Inst. Met., 1985, vol. 26 (1), pp. 33–43.

    Google Scholar 

  30. J.K. Wright and B.R. Baldock: Metall Trans. B, 1988, vol. 19B, pp. 375–82.

    CAS  Google Scholar 

  31. A. Williams, R. Moss, and P. Harrowell: J. Chem. Phys., 1993, vol. 99, pp. 3898–09.

    Article  Google Scholar 

  32. D. de Fontaine: in Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull, eds., Academic Press, New York, NY, 1979, vol. 34, pp. 73–75.

    Google Scholar 

  33. J. Lacaze and B. Sundman: Metall. Trans. A, 1991, vol. 22A, pp. 2211–17.

    CAS  Google Scholar 

  34. K. Binder, J.L. Lebowitz, M.K. Phani, and M.H. Kalos: Acta Metall., 1981, vol. 29, pp. 1655–65.

    Article  CAS  Google Scholar 

  35. J.M. Cowley: Phys. Rev., 1950, vol. 77, pp. 669–75.

    Article  CAS  Google Scholar 

  36. L.A. Girifalco and R.A. Lad: J. Chem. Phys., 1956, vol. 25 (4), pp. 693–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sahajwalla, V., Khanna, R. A monte carlo simulation study of dissolution of graphite in iron-carbon melts. Metall Mater Trans B 31, 1517–1525 (2000). https://doi.org/10.1007/s11663-000-0036-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0036-9

Keywords

  • Graphite
  • Material Transaction
  • Dissolution Rate
  • Monte Carlo
  • Interfacial Region