Skip to main content
Log in

Hydrogen trapping models in steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article describes the role of hydrogen trapping in steel. Trapping increases the solubility of hydrogen and decreases the diffusivity. Traps are characterized by their nature, i.e., reversible or irreversible, saturable or unsaturable. A dislocation core is a saturable, reversible trap, while voids and crack are unsaturable, reversible traps. A trap model based on saturable, reversible traps is developed, which is slightly different from the trap model of McNabb and Foster. In equilibrium, the trap model corresponds to Oriani’s trap model. Kumnick and Johnson found experimentally that the trap density increases as the plastic strain increases. Using their trap data, it is shown that equilibrium between hydrogen in lattice sites and trap sites can be assumed when strain rates are used as in standard tensile tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Turnbull: Corr. Sci., 1993, vol. 34, pp. 921–60.

    Article  CAS  Google Scholar 

  2. A. Sieverts and W. Krumbhaar: Ber. Deutsch. Chem. Ges., 1910, vol. 40, pp. 893–900.

    Google Scholar 

  3. L.S. Darken and R.P. Smit: Corrosion, 1949, vol. 5, pp. 1–16.

    Google Scholar 

  4. J. Völk and G. Alefeld: in Diffusion in Solids, Recent Developments, A.S. Nowick and J.J. Burton, eds., Academic Press, New York, NY, 1975, pp. 231–302.

    Google Scholar 

  5. H.H. Johnson: Metall. Trans. A, 1988, vol. 19A, pp. 2371–87.

    CAS  Google Scholar 

  6. H. Gao, W. Cao, C. Fanf, and E.R. de los Rios: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 1213–20.

    Article  CAS  Google Scholar 

  7. S. Sun, K. Shiozawa, J. Gu, and N. Chen: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–40.

    Google Scholar 

  8. A.H.M. Krom, R.W.J. Koers, and A. Bakker: J. Mech. Phys. Solids, 1999, vol. 47 (4), pp. 971–92.

    Article  CAS  Google Scholar 

  9. A. McNabb and P.K. Foster: Trans. AIME, 1963, vol. 227, pp. 618–27.

    CAS  Google Scholar 

  10. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  11. H.H. Johnson and R.W. Lin: in Hydrogen Effects in Metal, I.M. Bernstein and A.W. Thompson, eds., TMS AIME, New York, NY, 1981, pp. 3–23.

    Google Scholar 

  12. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  13. K. Kiuchi and R.B. McLellan: Acta Metall., 1983, vol. 31, pp. 961–84.

    Article  CAS  Google Scholar 

  14. Smithells Metals Reference Book, 7th ed., E.A. Brandis and G.B. Brooks, eds., Butterworth, and Co., London, 1992.

    Google Scholar 

  15. T. Zakroczymski: Corrosion, 1985, vol. 41, pp. 485–89.

    CAS  Google Scholar 

  16. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham, England, 1981.

    Google Scholar 

  17. G.M. Pressouyre: Acta Metall., 1980, vol. 28, pp. 895–911.

    Article  CAS  Google Scholar 

  18. P. Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989.

    Google Scholar 

  19. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, The Institute of Metals, London, 1987.

    Google Scholar 

  20. R.B. McLellan: Acta Metall., 1979, vol. 27, pp. 1655–63.

    Article  CAS  Google Scholar 

  21. R. Kircheim: Progr. Mater. Sci., 1988, vol. 32, pp. 261–325.

    Article  Google Scholar 

  22. N.R. Quick and H.H. Johnson: Acta Metall., 1978, vol. 26, pp. 903–07.

    Article  CAS  Google Scholar 

  23. A.H.M. Krom, R.W.J. Koers, and A. Bakker: Int. J. Pres. Ves. & Piping, 1997, vol. 72 (2), pp. 139–47.

    Article  CAS  Google Scholar 

  24. B. Chew: Met. Sci J., 1971, vol. 5, pp. 195–200.

    Article  CAS  Google Scholar 

  25. G.R. Caskey and W.L. Pillinger: Metall. Trans. A, 1975, vol. 6A, 467–76.

    CAS  Google Scholar 

  26. A.J. Kumnick and H.H. Johnson: Acta Metall., 1980, vol. 28, pp. 33–39.

    Article  CAS  Google Scholar 

  27. E. Riecke and K. Bohnenkamp: Z. Metallkd., 1984, vol. 75, pp. 76–81.

    CAS  Google Scholar 

  28. T.-P. Perng and C.J. Altstetter: Acta Metall., 1986, vol. 34, pp. 1771–81.

    Article  CAS  Google Scholar 

  29. T.-P. Perng, M. Johnson, and C.J. Altstetter: Acta Metall., 1989, vol. 37, pp. 3393–97.

    Article  CAS  Google Scholar 

  30. S.X. Xie and J.P. Hirth: Corrosion, 1982, vol. 38, pp. 486–93.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krom, A.H.M., Bakker, A. Hydrogen trapping models in steel. Metall Mater Trans B 31, 1475–1482 (2000). https://doi.org/10.1007/s11663-000-0032-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0032-0

Keywords

Navigation