Skip to main content
Log in

Modeling of gas-liquid reactions in ladle metallurgy: Part II. Numerical simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A combined three-dimensional, Lagrangian-Eulerian model for gas-liquid flow in a ladle was developed. The model compared very well with available experimental results in Wood’s metal in terms of void fraction, liquid velocity, and plume bending. From the model, it was clear that the lateral lift force is responsible for plume spreading, whereas lateral drag forces bend the plume. The model was extended to include mass transfer to rising bubbles and at the free surface. The rate of reaction compared very well with the results of part I on the desorption of carbon dioxide from sodium hydroxide solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C D :

drag coefficient

C L :

lifting coefficient

C T :

coefficient for the turbulent energy caused by shear work of bubbles

C VM :

virtual mass coefficient of bubbles

C µ :

constant of turbulent viscosity

G :

source term for turbulent energy caused by shear stress

K :

equilibrium constant

P :

dynamic pressure or turbulent energy caused by shear work of bubbles

S :

source terms

T :

time of bubble tracking

U :

velocity in ϑ direction

V :

velocity in r direction or volume

W :

velocity in z direction

\(\bar d\) :

average equivalent bubble diameter

F :

force

g :

gravitational acceleration

M L :

interfacial momentum exchange for liquid phase

S V :

source term for velocity components

U f :

fluctuation velocity

V :

velocity vector

k :

turbulent kinetic energy or reaction rate constant

r :

radius direction coordinate, or injector’s position

s :

distance in the ϑ direction

t :

time

z :

vertical direction coordinate

Φ:

general variable

Γ:

general diffusion coefficient

α :

volume fraction

δ :

coefficient, =1 for surface, =0 for internal control volumes

ɛ :

turbulent kinetic energy dissipation rate

μ :

dynamic viscosity

μ eff :

effective viscosity

μ t :

turbulent viscosity

ν :

kinematic viscosity

ϑ :

angular direction coordinate

ρ :

density

σ :

constant

ξ :

random number of Gaussian distribution

aq :

aqueous

b, bub:

bubble

e :

equilibrium

f :

fluctuation

g :

gas phase

l :

liquid phase

k :

the kth phase

s :

top surface

t :

turbulence or total

B :

buoyancy

CV :

control volume

D :

drag

EP :

turbulent kinetic energy dissipation rate

L :

lift

M :

mass

R :

relative (velocity)

TK :

turbulent kinetic energy

EP :

turbulent kinetic energy dissipation rate

References

  1. D. Mazumdar and R.I.L. Guthrie: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (1), pp. 1–20.

    CAS  Google Scholar 

  2. Y. Xie, S. Orsten, and F. Oeters: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (1), pp. 66–75.

    CAS  Google Scholar 

  3. S. Joo and R.I.L. Guthrie: Metall. Trans. B, 1992, vol. 23B, pp. 765–78.

    CAS  Google Scholar 

  4. Y. Pan, D. Guo, J. Ma, W. Wang, F. Tang, and C. Li: Iron Steel Inst. Jpn. Int., 1994, vol. 34 (10), pp. 794–801.

    CAS  Google Scholar 

  5. S.T. Johansen and F. Boysan: Metall. Trans. B, 1988, vol. 19B, pp. 755–64.

    CAS  Google Scholar 

  6. O.J. Ilegbusi and J. Szekely: Iron Steel Inst. Jpn. Int., 1990, vol. 30 (9), pp. 731–39.

    CAS  Google Scholar 

  7. D. Mazumdar and R.I.L. Guthrie: Iron Steel Inst. Jpn. Int., 1994, vol. 34 (5), pp. 384–92.

    CAS  Google Scholar 

  8. Y. Sheng and G.A. Irons: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 625–36.

    CAS  Google Scholar 

  9. P. Jönsson and L. Jonsson: Scand. J. Metall., 1995, vol. 24, pp. 194–206.

    Google Scholar 

  10. O.J. Ilegbusi, M. Iguchi, K. Nakajima, M. Sano, and M. Sakamoto: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 211–22.

    CAS  Google Scholar 

  11. H. Lamb: Hydrodynamics, Dover Publications, New York, NY, 1945, p. 13.

    Google Scholar 

  12. N.H. Thomas, T.R. Auton, K. Sene, and J.C.R. Kunt: Int. Conf. Physical Modelling of Multi-Phase Flow, Coventry, England, Apr. 12–21, 1983, BHRA Fluid Engineering Center, London, England, June 19–21, 1985, pp. 169–84.

    Google Scholar 

  13. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops, and Particles, Academic Press, New York, NY, 1978, p. 172.

    Google Scholar 

  14. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops, and Particles, Academic Press, New York, NY, 1978, p. 185.

    Google Scholar 

  15. M. Lopez de Bertodano, R.T. Lahey, and O.C. Jones: Int. J. Multiphase Flow, 1994, vol. 20 (5), pp. 805–18.

    Article  CAS  Google Scholar 

  16. S. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., New York, NY, 1981, p. 12.

    Google Scholar 

  17. B.E. Launder and D.B. Spalding: Computer Methods in Applied Mechanics and Engineering, 1974, vol. pp. 269–89.

  18. G.A. Irons and R.I.L. Guthrie: Metall. Trans., 1978, vol. 9B, pp. 101–10.

    CAS  Google Scholar 

  19. K. Koide, S. Kato, Y. Tanaka, and H. Kubato: J. Chem. Eng. Jpn., 1968, vol. 1 (1), pp. 51–56.

    CAS  Google Scholar 

  20. S. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., New York, NY, 1981, pp. 126 and 142.

    Google Scholar 

  21. Tecplot User’s Manual, Version 7.0, Amtec Engineering, Inc., Bellvue, WA, Aug. 1996.

  22. Y. Xie and F. Oeters: Steel Res., 1994, vol. 65 (8), pp. 315–19.

    CAS  Google Scholar 

  23. G.A. Irons: Ironmaking and Steelmaking, 1989, vol. 16(1), pp. 28–36.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Irons, G.A. Modeling of gas-liquid reactions in ladle metallurgy: Part II. Numerical simulation. Metall Mater Trans B 31, 1457–1464 (2000). https://doi.org/10.1007/s11663-000-0030-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0030-2

Keywords

Navigation