Skip to main content
Log in

Unsteady marangoni flow in a molten pool when welding dissimilar metals

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The unsteady variations of transport processes in molten pools when welding dissimilar metals are systematically investigated. Convection is driven by Marangoni forces with different directions and magnitudes on a flat free surface. For a clear description without loss of generality, three-dimensional quasi-steady welding is stimulated by an unsteady two-dimensional process. Applying the volume of fluid (VOF) and enthalpy methods to determine the interfaces between the immiscible dissimilar metals and between solid and liquid, the computed results show in detail the unsteady variations in the velocity and temperature fields, the solute concentration on the free surface, and the shapes of the molten regions affected by varying the signs and magnitudes of the surface-tension coefficients. The predicted shapes of the fusion-zone and solute distributions agree with the available experimental results in welding iron to aluminum, copper and iron, and copper to nickle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bi:

Biot number, hH/k 1l

c :

specific heat

c σ :

surface tension coefficient, c *σ =(c σ H(T m1T )(μ 1 α 1l )

D :

depth of fusion zone, D*=D/H, as illustrated in Fig. 1(b)

f :

liquid-to-solid volumetric fraction

F :

metal 1-to-2 volumetric fraction

g :

gravitational acceleration

G :

H 3 g/α /21l

h :

heat-transfer coefficient

H :

metal thickness, as illustrated in Fig. 1(a)

l :

sensible heat, I*=I/[c ls (T m1α 1l)]

k :

thermal conductivity, k*=k/k 1l

p :

pressure, p*=pH 2/(ϱ 1 α 21l

Pr:

Prandtl number, μ 1 c 1l /k 1l

Q :

beam power, Q*=Q/[Hk 1l (T m1−T m1T )]

r :

radial coordinate, r*=r/H

St:

Stefan number=[c 1s (T m1T m1T )]/h s/l

t :

time, t*= 1l /H 2

T :

temperature, T*=(TT TT )/(T m1T )

u :

velocity component in x direction, u*=uH/α 1l

U :

welding speed

v :

velocity component in y direction, ν*=νH/α 1l

W :

surface width of pool, W*=W/H, as illustrated in Fig. 1(b)

x, y, z :

coordinates, (x*, y*, z*)=(x, y, z)/H, as illustrated in Fig. 1(a)

α 1l :

thermal diffusivity=k 1l /(ϱ 1 c 1l )

β :

expansion coefficient, β*=β/β 1

μ :

viscosity, μ*=μ/μ 1

ϱ :

density, ϱ*=ϱ/ϱ 1

σ :

surface tension=σ m+c σ (TT m)

σ q :

energy distribution parameter, σ* q =σ q/H

*:

dimensionless quantity

l :

liquid

m :

melting

s :

solid

0:

initial

1, 2:

dissimilar metals, as illustrated in Fig. 1(a)

∞:

ambient

References

  1. Z. Sun and T. Moisio: Welding J., 1994, vol. 73, pp. 63–70.

    CAS  Google Scholar 

  2. H.B. Cary: Modern Welding Technology, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 555–59.

    Google Scholar 

  3. F.K. Chung and P.S. Wei: J. Heat Transfer, 1999, vol. 121, pp. 451–61.

    CAS  Google Scholar 

  4. J. Seretsky and E.R. Ryba: Welding J., 1976, vol. 55, pp. 208-s–211-s.

    Google Scholar 

  5. A.M. Unger: Welding J., 1941, vol. 20, pp. 42–47.

    Google Scholar 

  6. E.F. Nippes, A.R. Pfluger, and G.M. Slaughter: Welding J., 1950, vol. 29, pp. 134-s–139-s.

    Google Scholar 

  7. P.S. Wei, Y.K. Kuo, and J.S. Ku: J. Heat Transfer, 2000, vol. 122.

  8. M.J. Tinkler, I. Grant, G. Mizuno, and C. Gluck: Paper 29, The Welding Institute, Abington, 1983.

  9. G.R. Belton: Metall. Trans. B, 1976, vol. 7B, pp. 35–42.

    CAS  Google Scholar 

  10. P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans B, 1988, vol. 19B, pp. 483–91.

    CAS  Google Scholar 

  11. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1990, vol. 35, pp. 185–216.

    CAS  Google Scholar 

  12. C.R. Heiple and J.R. Roper: Weld. J., 1982, vol. 61, pp. 97-s–102-s.

    Google Scholar 

  13. A. Paul and T. DebRoy: Metall. Trans. B, 1988, vol. 19B, pp. 851–58.

    CAS  Google Scholar 

  14. C. Chan, J. Mazumder, and M.M. Chen: Metall. Trans. A, 1984, vol. 15A, pp. 2175–84.

    CAS  Google Scholar 

  15. A.K. Sen and S.H. Davis: J. Fluid Mech., 1982, vol. 121, pp. 163–86.

    Article  CAS  Google Scholar 

  16. C.A. Miller and P. Neogi: Interfacial Phenomena, Equilibrium and Dynamic Effects, Marcel Dekker, New York, NY, 1985, pp. 36–43.

    Google Scholar 

  17. T.L. Bergman, Phys. Fluids, 1986, vol. 29, pp. 2103–08.

    Article  CAS  Google Scholar 

  18. T. DebRoy, S. Basu, and K. Mundra: J. Appl. Phys., 1991, vol. 70, pp. 1313–19.

    Article  CAS  Google Scholar 

  19. A.D. Brent, V.R. Voller, and K.J. Reid: Num. Heat Transfer, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  20. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, NY, 1980, pp. 44–46.

    Google Scholar 

  21. C.W. Hirt and B.D. Nichols: J. Computational Phys., 1981, vol. 39, pp. 201–25.

    Article  Google Scholar 

  22. N. Ashgriz and J.Y. Poo: J. Computational Phys., 1991, vol. 93, pp. 449–68.

    Article  CAS  Google Scholar 

  23. D.B. Kothe and R.C. Mjolsness: AIAA J., 1992, vol. 30, pp. 2694–2700.

    Article  CAS  Google Scholar 

  24. S. Kou and Y.H. Wang: Welding J., 1986, vol. 65, pp. 63-s–70-s.

    Google Scholar 

  25. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Welding J., 1989, vol. 68, pp. 499-s–509-s.

    Google Scholar 

  26. B. Chalmers: Principles of Solidification, John Wiley, New York, NY, 1964, pp. 132–42.

    Google Scholar 

  27. F.K. Chung: Ph.D. Dissertation, National Sun Yat-Sen University, Kaohsiung, 1998.

    Google Scholar 

  28. G. Phanikumar, R. Pardeshi, K. Chattopadhyay, P. Dutta, and J. Majumder: Trends in Welding Research, Proc. 5th Int. Conf. Pine Mountain, GA, J.M. Vitek, S.A. David, J.A. Johnson, H.B. Smartt, and T. DebRoy, eds., ASM INTERNATIONAL, Materials Park, OH, June 1–5, 1998, pp. 461–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, P.S., Chung, F.K. Unsteady marangoni flow in a molten pool when welding dissimilar metals. Metall Mater Trans B 31, 1387–1403 (2000). https://doi.org/10.1007/s11663-000-0024-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0024-0

Keywords

Navigation