Skip to main content
Log in

Monosize droplet deposition as a means to investigate droplet behavior during spray deposition

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A Rayleigh atomization technique is employed to produce streams of evenly spaced, monosized droplets of molten metal. We study the effects of variations in selected process parameters upon the droplet formation mechanism and the morphology and microstructure of resulting deposits. Initial tests with alcohol jets show that changes in the flow velocity, drive frequency, and destabilization amplitude have a significant effect upon the efficiency of droplet formation and the uniformity of the droplet stream. For instance, an integer-multiple increase in the flow velocity shifts the frequency threshold for stable jet breakup by an integer multiple of its original value. In addition, the optimal frequency range broadens at higher flow velocities. Microstructural studies on Sn/Pb droplets formed using this approach show signs of rapid solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Delplanque and R.H. Rangel: Acta Mater., 1999, vol. 47, pp. 2207–13.

    Article  CAS  Google Scholar 

  2. G. Trapaga, E.F. Matthys, J.J. Valencia, and J. Szekely: Metall. Trans. B, 1992, vol. 23B, pp. 701–18.

    CAS  Google Scholar 

  3. H. Liu, E.J. Lavernia, and R.H. Rangel: J. Phys. D, 1993, vol. 26, pp. 1900–08.

    Article  Google Scholar 

  4. B. Kang, Z. Zhao, and D. Poulikakos: Trans. ASME: J. Heat Transfer, 1994, vol. 116, pp. 436–45.

    Article  CAS  Google Scholar 

  5. Z. Zhao, D. Poulikakos, and J. Fukai: Int. J. Heat Mass Transfer, 1996, vol. 39, pp. 2771–89.

    Article  CAS  Google Scholar 

  6. K. Schmaltz and C.H. Amon: Proc. ASME: IMECE, Heat Transfer Division, ASME, San Francisco, CA, 1995, vol. 317–1, pp. 219–26.

    Google Scholar 

  7. J.-P. Delplanque and R.H. Rangel: Acta Mater., 1998, vol. 46, pp. 4925–33.

    Article  CAS  Google Scholar 

  8. V.V. Sobolev and J.M. Guilemany: Mater. Lett., 1998, vol. 33, pp. 315–20.

    Article  CAS  Google Scholar 

  9. C.S. Marchi, H. Liu, E.J. Lavernia, and R.H. Rangel: J. Mater. Sci., 1993, vol. 28, pp. 3313–21.

    Article  Google Scholar 

  10. J.-P. Delplanque, E.J. Lavernia, and R.H. Rangel: University of California, Irvine, CA, unpublished research, 1999.

  11. D.B. Kothe, R.C. Mjolness, and M.D. Torrey: RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces, Los Alamos National Laboratory, Los Alamos, NM, 1991.

    Google Scholar 

  12. J.-P. Delplanque, E.J. Lavernia, and R.H. Rangel: Num. Heat Transfer A, 1996, vol. 30, pp. 1–18.

    CAS  Google Scholar 

  13. M. Bussmann, J. Mostaghimi, and S. Chandra: Phys. Fluids, 1999, vol. 11, pp. 1406–17.

    Article  CAS  Google Scholar 

  14. A. Canton, J.-P. Delplanque, and R.H. Rangel: Paper Presented at 1998 ASME IMECE, Anaheim, CA, 1998.

  15. M. Pasandideh-Fard, R. Bhola, S. Chandra, and J. Mostaghimi: Int. J. Heat Mass Transfer, 1998, vol. 41, pp. 2929–45.

    Article  CAS  Google Scholar 

  16. S. Schiaffino and A.A. Sonin: Phys. Fluids, 1997, vol. 9, pp. 2217–26.

    Article  CAS  Google Scholar 

  17. S. Schiaffino and A.A. Sonin: Phys. Fluids, 1997, vol. 9, pp. 2227–33.

    Article  CAS  Google Scholar 

  18. J.-P. Delplanque and R.H. Rangel: J. Mater. Sci., 1997, vol. 32, pp. 1519–30.

    Article  CAS  Google Scholar 

  19. M. Rein: Fluid Dyn. Res., 1993, vol. 12, pp. 61–93.

    Article  Google Scholar 

  20. M. Orme: Phys. Fluids A, 1991, vol. 3, p. 2936.

    Article  CAS  Google Scholar 

  21. M. Orme: J. Mater. Eng. Perf., 1993, vol. 2.

  22. D.J. Hayes, D.B. Wallace, M.T. Boldman, and R.E. Marusak: Int. J. Microcircuits Electronics Packaging, 1993, vol. 16, pp. 173–80.

    Google Scholar 

  23. D.J. Hayes, D.B. Wallace, and M.T. Boldman: Proc. ISHM, 1992.

  24. C.H. Passow, J.-H. Chun, and T. Ando: Metall. Trans. A, 1993, vol. 24A, pp. 1187–93.

    CAS  Google Scholar 

  25. P. Acquaviva, C.-A. Chen, J.-H. Chun, and T. Ando: Proc. ASME: IMECE, Heat Transfer Division, ASME, San Francisco, CA, 1995, vol. 317–1.

    Google Scholar 

  26. L. Rayleigh: Proc. London Math. Soc., 1878, vol. 10, p. 4.

    Article  Google Scholar 

  27. L. Rayleigh: Proc. R. Soc. London, 1879, vol. 29, p. 71.

    Google Scholar 

  28. K.C. Chaudhary, I.G. Redekopp, and T. Maxworthy: J. Fluid Mech., 1979, vol. 96, pp. 257–312.

    Article  Google Scholar 

  29. W.T. Primbley: IBM J. Res. Dev., 1984, vol. 29, pp. 148–56.

    Google Scholar 

  30. D.B. Bogy and F.E. Talke: IBM J. Res. Dev., 1984, vol. 29, pp. 314–21.

    Article  Google Scholar 

  31. J.F. Dijksman: J. Fluid Dyn., 1984, vol. 139, pp. 173–91.

    Google Scholar 

  32. W.D. Warnica, M.V. Reenen, M. Renksizbulut, and B.A. Strong: Rev. Sci. Instrum, 1991, vol. 62, p. 3037.

    Article  CAS  Google Scholar 

  33. J.M. Schneider and C.D. Hendricks: Rev. Sci. Instrum, 1964, vol. 35, p. 1349.

    Article  Google Scholar 

  34. F. Gao and A.A. Sonin: Proc. R. Soc. London A, 1994, vol. 444, pp. 533–54.

    Article  Google Scholar 

  35. J. Madjeski: Int. J. Heat Mass Transfer, 1976, vol. 19, pp. 1009–13.

    Article  Google Scholar 

  36. E.W. Collings, A.J. Markworth, J.K. McCoy, and J.H. Saunders: J. Mater. Sci., 1990, vol. 25, pp. 3677–82.

    Article  CAS  Google Scholar 

  37. S. Inada and W.-J. Wang: Exp. Heat Transfer, 1994, vol. 7, pp. 93–100.

    CAS  Google Scholar 

  38. D.B. Wallace: ASME J. Fluids Eng., 1993, vol. 115, pp. 529–32.

    CAS  Google Scholar 

  39. Q.V. Nguyen and D. Dunn-Rankin: Exp. Fluids, 1992, vol. 12, p. 157.

    Article  CAS  Google Scholar 

  40. E.A. Brandes: Smithell’s Metals Reference, Butterworth and Co., London, 1983.

    Google Scholar 

  41. J.F. Seconde and M. Suery: J. Mater. Sci., 1984, vol. 19, p. 3995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armster, S.Q., Lavernia, E.J., Delplanque, J.P. et al. Monosize droplet deposition as a means to investigate droplet behavior during spray deposition. Metall Mater Trans B 31, 1333–1344 (2000). https://doi.org/10.1007/s11663-000-0020-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0020-4

Keywords

Navigation