Skip to main content
Log in

Rate of slag reduction in a laboratory electric furnace—alternating vs direct current

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The objective of this laboratory investigation was to measure the reduction kinetics of nickel smelting and converting slags using alternating current (AC) and direct current (DC). The two slags tested contained 34 and 51 pct total iron in the form of FeO and Fe3O4. Laboratory experiments were carried out between 1200 °C and 1450 °C, and the rate of reduction was measured based on the CO and CO2 contents in the off-gas from the furnace. Upon application of power to a pair of electrodes immersed in the molten slag, the reduction rate increased rapidly. This increase is explained by an increase in the electrode tip temperature enhancing the rate of the Boudouard reaction. The rate of reduction of the converter slag containing 29 pct Fe3O4 was 2 to 3 times faster than the smelting slag. With DC, the reduction rates at the anode and cathode were basically identical to each other, while for the smelting slag with only 8 pct Fe3O4, the anode and cathode reduction rates were quite different. With increasing current or power density, the temperatures of the electrodes increase above that of the bulk slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Ruddle: The Physical Chemistry of Copper Smelting, The Institution of Mining and Metallurgy, London, 1953, pp. 64–107.

    Google Scholar 

  2. J.C. Yannopoulos: Can. Metall. Q., 1971, vol. 10, pp. 291–307.

    CAS  Google Scholar 

  3. P.J. Mackey: Can. Metall. Q., 1982, vol. 21, pp. 221–60.

    CAS  Google Scholar 

  4. P. Spira and N.J. Themelis: J. Met., 1969, vol. 21, pp. 35–42.

    CAS  Google Scholar 

  5. W.R.N. Snelgrove and J.C. Taylor: Can. Metall. Q., 1981, vol. 20, pp. 231–40.

    CAS  Google Scholar 

  6. B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 717–30.

    Article  CAS  Google Scholar 

  7. M. Bafghi, Y. Iti, S. Yamada, and M. Sano: Iron Steel Inst. Jpn., 1992, vol. 32, p. 531.

    Google Scholar 

  8. M.P. Shalimov, V.N. Boronenkov, and S.A. Lyamkin: Russ. Metall., 1980, No. 6, pp. 31–34.

  9. A.P. Sychev, M.A. Lyamina, I.M. Cheredvik, V.M. Fedotov, and Yu.I. Sannikov: Russ. Metall., 1976, No. 5, pp. 16–20.

  10. M.D. Galimov, A.I. Okunev, L.I. Galkov, and A.D. Vershinin: Russ. Metall., 1977, No. 6, pp. 12–16.

  11. T.A. Utigard, G. Sanchez, J. Manriquez, A. Luraschi, C. Diaz, D. Cordero, and E. Almendras: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 821–26.

    CAS  Google Scholar 

  12. A. Warczok and T.A. Utigard: Can. Metal. Q., 1998, vol. 37, pp. 27–39.

    Article  CAS  Google Scholar 

  13. A. Warczok and T.A. Utigard: Proc. Non-Ferrous Pyrometallurgy: Trace Metals, Furnace Practices and Energy Efficiency, CIM Annual Meeting, Edmonton, Aug. 1992, CIM, Montreal, Quebec, Canada, pp. 403–19.

    Google Scholar 

  14. I. Dal, N. Li, and E. Grimsey: Proc. Pyrometallurgical Fundamentals and Process Development, CIM, Sudbury, 1997, vol. II, pp. 77–92

    Google Scholar 

  15. A. Paul, B. Deo, and N. Sathyamurthy: Steel Res., 1994, vol. 10, pp. 414–20.

    Google Scholar 

  16. T. Soma and Y. Sasaki: Metall. Trans. B, 1977, vol. 8B, pp. 189–90.

    Google Scholar 

  17. H. Krainer, H.P. Beer, and H. Brandl: Tech. Mitteilung Krupp Forschungsberg, 1966, vol. 24, pp. 136–46.

    Google Scholar 

  18. F. Fun: Metall. Trans., 1970, vol. 1, pp. 2537–41.

    CAS  Google Scholar 

  19. A.V. Vanyukov and V.Ya. Zaytsev: Slaki i Stejny Cvetnoj Metallurgii, Metallurgija, Moskva, 1969.

    Google Scholar 

  20. V.V. Chlynov and O.A. Jesin: Dokl. SSSR, 1958, vol. 120(1), pp. 134–37.

    Google Scholar 

  21. V.V. Chlynov and O.A. Jesin: Dokl. SSSR, 1958, vol. 123(2), pp. 320–23.

    Google Scholar 

  22. V.G. Levich: Physiochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1962, pp. 472–531.

    Google Scholar 

  23. J.S. Sinelscikova and J.P. Nikitin: Izv. Electrochim., 1978, vol. 14(4) pp. 442–48.

    Google Scholar 

  24. R. Kammel: Erzmetallurgy, 1974, vol. 27(3), pp. 135–44.

    CAS  Google Scholar 

  25. J.O.M. Bockris, J. Kitchener, and A. Davis: Trans. Faraday Soc., 1952, vol. 48, pp. 536–48.

    Article  CAS  Google Scholar 

  26. M. Simnad and G. Derge: J. Chem. Phys., 1953, vol. 21, pp. 933–34.

    Article  CAS  Google Scholar 

  27. W.P. Channon, R.C. Urquhart, and D.D. Howat: J. South African Inst. Mining Metall., 1974, Aug., pp. 4–7.

  28. E.T. Turkdogan, V. Koump, J.V. Vinters, and T.F. Perzak: Carbon, 1968, vol. 6, pp. 467–84.

    Article  CAS  Google Scholar 

  29. E.A. Gulbransen, K.F. Andrew, and F.A. Brassart: Carbon, 1956, vol. 2, pp. 421–29.

    Article  Google Scholar 

  30. A. Warczok and T.A. Utigard: University of Toronto, Toronto, unpublished research, Oct. 1999.

  31. R.T. Jones, D.A. Hayman, and G.M. Denton: Proc. Challenges in Process Intensification, CIM Annual Meeting, Montreal, Quebec, Aug. 1996, pp. 451–66.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Rassi, K.P., Utigard, T.A. Rate of slag reduction in a laboratory electric furnace—alternating vs direct current. Metall Mater Trans B 31, 1187–1194 (2000). https://doi.org/10.1007/s11663-000-0005-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0005-3

Keywords

Navigation