Skip to main content
Log in

Statistical simulation of small fatigue crack nucleation and coalescence in a lamellar TiAl alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article examines the possibility of fatigue failure as the result of fatigue crack nucleation and coalescence at stress ranges below the fatigue limit and the large crack threshold where fatigue cracks are expected not to grow. By representing the material as a two-dimensional array of beam elements, the nucleation of nonpropagating small cracks at various material locations is modeled via a statistical approach that considers fatigue crack nucleation by accumulation of damage at randomly distributed weak regions. Once nucleated, the fatigue cracks do not propagate but extend only by linking with fatigue cracks subsequently formed in the contiguous elements. Result of the computer simulation suggests that fatigue failure by crack nucleation and coalescence is feasible, but the cycles-to-coalescence is much longer than the cycles-to-initiation for the first crack. Implications of the results in fatigue life assessment based on the Kitagawa diagram are discussed for TiAl alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Davidson and J.B. Campbell: Metall. Trans. A, 1993, vol. 24A, pp. 1555–74.

    CAS  Google Scholar 

  2. Y.-W. Kim: JOM, 1994, vol. 46 (7), pp. 30–40.

    CAS  Google Scholar 

  3. J.M. Larsen, B.D. Worth, S.J. Balsone, and J.W. Jones: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 821–34.

    Google Scholar 

  4. K.T. Venkateswara Rao, Y.-W. Kim, C.L. Muhlstein, and R.O. Ritchie: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 474–82.

    Google Scholar 

  5. K.S. Chan: JOM, 1997, vol. 49 (7), pp. 53–58.

    CAS  Google Scholar 

  6. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 79–90.

    CAS  Google Scholar 

  7. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 73–87.

    Article  CAS  Google Scholar 

  8. D.M. Dimiduk: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 3–20.

    Google Scholar 

  9. H. Kitagawa, S. Takahashi, C.M. Suh, and S. Miya: Fatigue Mechanisms, ASTM STP 675, ASTM, Philadelphia, PA, 1979, pp. 420–49.

    Google Scholar 

  10. A. Ueno, H. Kishimoto, and T. Kondo: in Fatigue 93, J.-P. Bailon and J.I. Dickson, eds., EMAS, Warley, United Kingdom, 1993, pp. 1037–41.

    Google Scholar 

  11. W.V. Vaidya, K.-H. Schwalbe, and R. Wagner: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and N. Yamaguchi, eds., TMS, Warrendale, PA, 1995, pp. 867–74.

    Google Scholar 

  12. C. Bathias: Paper presented at Euromech 382, Conf. on Fatigue Life in the Gigacycle Regime, Paris, June 1998.

  13. Statistical Models for the Fracture of Disordered Media, H.J. Herrmann and S. Roux, eds., North-Holland, Amsterdam, 1991.

    Google Scholar 

  14. B. Wittkowsky, M. Pfuff, B. Dogan, K.-H. Schwalbe, and R. Wagner: Mater. Sci. Eng., 1994, vol. A187, pp. 105–11.

    CAS  Google Scholar 

  15. B.W. Rosen: AIAA J. 1964, vol. 2, pp. 1985–91.

    Article  Google Scholar 

  16. S.L. Phoenix and H.M. Taylor: Adv. Appl. Prob., 1973, vol. 5, pp. 200–16.

    Article  Google Scholar 

  17. W. Weibull: J. Appl. Mech., 1951, vol. 18, pp. 293–96.

    Google Scholar 

  18. A.M. Freudenthal: in Fracture, H. Leibowitz, ed., Academic Press, New York, NY, 1968, vol. 2, pp. 591–619.

    Google Scholar 

  19. L.F. Coffin, Jr.: Trans ASME, 1954, vol. 76, pp. 931–50.

    CAS  Google Scholar 

  20. S.S. Manson and M.H. Hirschberg: Fatigue: An Inter-Disciplinary Approach, Syracuse University Press, Syracuse, NY, 1964, pp. 133–78.

    Google Scholar 

  21. A. Palmgren: Z. Ver. Deutscher Ing., 1924, vol. 68, pp. 339–41.

    Google Scholar 

  22. M.A. Miner: J. Appl. Mech. 1945, vol. 12, pp. A159-A164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K., Wittkowsky, B. & Pfuff, M. Statistical simulation of small fatigue crack nucleation and coalescence in a lamellar TiAl alloy. Metall Mater Trans A 30, 1203–1209 (1999). https://doi.org/10.1007/s11661-999-0270-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0270-y

Keywords

Navigation