Skip to main content
Log in

Modeling high-temperature stress-strain behavior of cast aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A modified two-state-variable unified constitutive model is presented to model the high-temperature stress-strain behavior of a 319 cast aluminum alloy with a T7 heat treatment. A systematic method is outlined, with which one can determine the material parameters used in the experimentally based model. The microstructural processes affecting the material behavior were identified using transmission electron microscopy and were consequently correlated to the model parameters. The stress-strain behavior was found to be dominated by the decomposition of the metastable θ′ precipitates within the dendrites and the subsequent coarsening of the θ phase, which was manifested through remarkable softening with cycling and time. The model was found to accurately simulate experimental stress-strain behavior such as strain-rate sensitivity, cyclic softening, aging effects, transient material behavior, and stress relaxation, in addition to capturing the main deformation mechanisms and microstructural changes as a function of temperature and inelastic strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Heywood: Internal Combustion Engine Fundamentals, McGraw-Hill Publishing Corp., New York, NY, 1988, p. 699.

    Google Scholar 

  2. J.E. Allison: Ford Motor Company, Scientific Research Laboratory, Dearborn, MI, private communication, 1997.

  3. R. Chiumert and M. Garat: 3rd Int. Symp. on Aluminum and Automobile, 1988, Aluminium-Verlag GmbH, Düsseldorf, 1998, pp. 154–59.

    Google Scholar 

  4. A. Wickberg, G. Gustafson, and L.E. Larson: SAE Trans., 1984, vol. 93, pp. 728–35.

    Google Scholar 

  5. O. Vorren, J.E. Evensen, and T.B. Pedersen: AFS Trans., 1984, vol. 92, pp. 459–66.

    CAS  Google Scholar 

  6. J.M. Boileau and J.E. Allison: Fatigue ’96, Proc. 6th Int. Fatigue Congress, Berlin, 1996, pp. 941–46.

  7. R.B. Gundlach, B. Ross, A. Hetke, S. Valtierra, and J.F. Mojica: AFS Trans., 1994, vol. 102, pp. 205–23.

    CAS  Google Scholar 

  8. H. Beumler, A. Hammerstad, B. Wieting, and R. DasGupta: AFS Trans., 1988, vol. 96, pp. 1–12.

    CAS  Google Scholar 

  9. R. Vijayaraghavan, N. Palle, J. Boileau, J. Zindel, R. Beals, and F. Bradley: Scripta Mater., 1996, vol. 35, pp. 861–67.

    Article  CAS  Google Scholar 

  10. H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., 1990, vol. 38, pp. 1789–1802.

    Article  CAS  Google Scholar 

  11. J.A. Eady and D.M. Smith: SAE Trans., 1984, vol. 93, pp. 747–55.

    Google Scholar 

  12. G.K. Sigworth: AFS Trans., 1983, vol. 91, pp. 7–16.

    CAS  Google Scholar 

  13. S. Tohriyama and M. Kumano: Aluminum Applications for Automotive Design, SAE, Warrendale, PA, 1995, pp. 47–57.

    Google Scholar 

  14. P. Jonason: AFS Trans., 1992, vol. 100, pp. 601–07.

    CAS  Google Scholar 

  15. E. Velasco, R. Colás, S. Valtierra, and J.F. Mojica: Int. J. Fatigue, 1995, vol. 17, pp. 399–406.

    Article  CAS  Google Scholar 

  16. J.B. Andrews and M.V.C. Seneviratne: AFS Trans., 1984, vol. 92, pp. 209–16.

    CAS  Google Scholar 

  17. A. Hetke and R.B. Gundlach: AFS Trans., 1994, vol. 102, pp. 367–80.

    CAS  Google Scholar 

  18. D. Slavik and H. Sehitoglu: ASME PVP 123, ASME, Fairfield, NJ, 1987, pp. 65–82.

  19. T.J. Smith, H. Sehitoglu, X. Qing, and H.J. Maier: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Proc. 4th Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Garmisch-Partenkirchen, Germany, Elsevier Science Limited, New York, NY, 1998, pp. 167–72.

    Google Scholar 

  20. S. Doong, D.F. Socie, and I.M. Robertson: J. Eng. Mater. Technol., 1990, vol. 112, pp. 456–64.

    CAS  Google Scholar 

  21. H.-J. Christ and H. Mughrabi: Fatigue Fract. Eng. Mater. Struct., 1996, vol. 19, pp. 335–48.

    Article  CAS  Google Scholar 

  22. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, 1st ed., Pergamon Press, Elmsford, NY, 1982, pp. 1–5.

    Google Scholar 

  23. D.C. Stouffer and L.T. Dame: Inelastic Deformation of Metals, John Wiley & Sons Inc., New York, NY, 1996, pp. 33–34.

    Google Scholar 

  24. S.P. Bhat and C. Laird: Acta Metall., 1979, vol. 27, pp. 1861–71.

    Article  CAS  Google Scholar 

  25. G.M. Vyletel, D.C. Van Aken, and J.E. Allison: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3155–62.

    Google Scholar 

  26. V.B. Nileshwar: J. Inst. Met., 1963–64, vol. 92, pp. 241–45.

    Google Scholar 

  27. P.E. Krajewski, J.W. Jones, and J.E. Allison: Metall. Trans. A, 1993, vol. 24A, pp. 2731–42.

    CAS  Google Scholar 

  28. C. Calabrese and C. Laird: Mater. Sci. Eng., 1974, vol. 13, pp. 159–74.

    Article  CAS  Google Scholar 

  29. W.M. Stobbs and G.R. Purdy: Acta Metall., 1978, vol. 26, pp. 1069–81.

    Article  CAS  Google Scholar 

  30. M.C. Flemings, T.Z. Kattamis, and B.P. Bardes: AFS Trans., 1991, vol. 99, pp. 501–06.

    CAS  Google Scholar 

  31. R.I. Stephens, H.D. Berns, R.A. Chernenkoff, R.L. Indig, S.K. Koh, D.J. Lindenfelser, M.R. Mitchell, R.A. Testin, and C.C. Wigans: SAE Technical Paper No. 881701, SAE, 1988.

  32. J.E. Gruzleski and B.M. Closset: The Treatment of Liquid Aluminum Silicon Alloys, American Foundrymen’s Society, Des Plaines, IL, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

on leave from Universität-GH Siegen, 57068 Siegen, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.J., Sehitoglu, H., Fleury, E. et al. Modeling high-temperature stress-strain behavior of cast aluminum alloys. Metall Mater Trans A 30, 133–146 (1999). https://doi.org/10.1007/s11661-999-0201-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0201-y

Keywords

Navigation