Skip to main content
Log in

A process model for the microstructure evolution in ductile cast iron: Part I. the model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present investigation, the multiple phase changes occurring during solidification and subsequent cooling of near-eutectic ductile cast iron have been modeled using the internal state variable approach. According to this formalism, the microstructure evolution is captured mathematically in terms of differential variation of the primary state variables with time for each of the relevant mechanisms. Separate response equations have then been developed to convert the current values of the state variables into equivalent volume fractions of constituent phases utilizing the constraints provided by the phase diagram. The results may conveniently be represented in the form of C curves and process diagrams to illuminate how changes in alloy composition, graphite nucleation potential, and thermal program affect the microstructure evolution at various stages of the process. The model can readily be implemented in a dedicated numerical code for the thermal field in real castings and used as a guiding tool in design of new treatment alloys for ductile cast irons. An illustration of this is given in an accompanying article (Part II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Minkoff: The Physical Metallurgy of Cast Iron, John Wiley & Sons Ltd., New York, NY, 1983.

    Google Scholar 

  2. R. Elliott: Cast Iron Technology, Butterworth and Co., London, 1988.

    Google Scholar 

  3. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  4. D.M. Stefanescu: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 637–50.

    CAS  Google Scholar 

  5. D. Venugopalan: Metall. Trans. A, 1990, vol. 21A, pp. 913–18.

    CAS  Google Scholar 

  6. A. Almansour, K. Matsugi, T. Hatayama, and O. Yanagisawa: Mater. Trans., JIM, 1996, vol. 37, pp. 612–19.

    CAS  Google Scholar 

  7. A. Almansour, K. Matsugi, T. Hatayama, and O. Yanagisawa: Mater. Trans., JIM, 1995, vol. 36, pp. 1487–95.

    CAS  Google Scholar 

  8. L. Nastac and D.M. Stefanescu: AFS Trans., 1995, vol. 103, pp. 329–37.

    CAS  Google Scholar 

  9. R. Mai, B. Leube, and E. Schüle: Giessereiforschung, 1995, vol. 47, pp. 1–5.

    CAS  Google Scholar 

  10. Q. Chen, E.W. Langer, and P.N. Hansen: Scand. J. Metall., 1995, vol. 24, pp. 48–62.

    CAS  Google Scholar 

  11. S. Chang, D. Shangguan, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 1333–46.

    CAS  Google Scholar 

  12. E. Fras, W. Kapturkiewicz, and H.F. Lopez: AFS Trans., 1992, vol. 100, pp. 583–91.

    CAS  Google Scholar 

  13. G. Upadhya, D.K. Banerjee, D.M. Stefanescu, and J.L. Hill: AFS Trans., 1990, vol. 98, pp. 699–706.

    CAS  Google Scholar 

  14. M.F. Ashby: Mater: Sci. Technol., 1992, vol. 8, pp. 102–11.

    CAS  Google Scholar 

  15. H.R. Shercliff, Ø. Grong, O.R. Myhr, and M.F. Ashby: Proc. 3rd Int. Conf. On Aluminium Alloys (ICAA3), Trondheim, Norway, 1992, vol. III, Norwegian Institute of Technology, Trondheim, Norway, 1992, pp. 357–69.

    Google Scholar 

  16. H. Shercliff, P. Sargent, and R.L. Wood: Modelling Materials Processing, Cambridge University Engineering Department Technical Report CUED/C-MATS/TR206, Cambridge University, Cambridge, United Kingdom, 1993.

    Google Scholar 

  17. D.H. Bratland, Ø. Grong, H.R. Shercliff, O.M. Myhr, and S. Tjøtta: Acta Mater., 1997, vol. 45, pp. 1–22.

    Article  CAS  Google Scholar 

  18. Ø. Grong: Metallurgical modelling of welding, 2nd ed., The Institute of Materials, London, 1997.

    Google Scholar 

  19. O. Richmond: Proc. Int. Conf. Aluminium Technology “89,” The Institute of Materials, London, 1986, p. 615.

    Google Scholar 

  20. M.I. Onsøien, Ø. Grong, Ø. Gundersen, and T. Skaland: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1069–79.

    Google Scholar 

  21. J.W. Christian: The Theory of Phase Transformations in Metals and Alloys—Part I, Pergamon Press, Oxford, United Kingdom, 1975.

    Google Scholar 

  22. E. Scheil: Arch. Eisenhüttenwes., 1934–35, vol. 8, pp. 565–71.

    Google Scholar 

  23. H.S. Carslaw and J.C. Jaeger: Conduction of heat in solids, 2nd ed., Oxford University Press, Oxford, United Kingdom, 1959.

    Google Scholar 

  24. T. Skaland, Ø. Grong, and T. Grong: Metall. Trans. A, 1993, vol. 24A, pp. 2321–45.

    CAS  Google Scholar 

  25. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992.

    Google Scholar 

  26. S.E. Wetterfall, H. Fredriksson, and M. Hillert: Journal Iron Steel Inst., 1972, vol. 210, pp. 323–33.

    CAS  Google Scholar 

  27. K.C. Su, I. Ohnaka, I. Yamauchi, and I. Fukusako: Mater. Res. Symp., 1985, vol. 34, pp. 181–89.

    CAS  Google Scholar 

  28. M. Hillert: in Recent Research on Cast Iron, H.D. Merchant, ed., Gordon and Breach, New York, NY, 1969.

    Google Scholar 

  29. M.I. Onsøien, Ø. Grong, G. Rørvik, A. Nordmark, and T. Skaland: Int. J. Cast Met. Res., 1997, vol. 10, pp. 17–26.

    Google Scholar 

  30. D.M. Stefanescu: ASM Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals, Park, OH, 1988, vol. 15, pp. 61–70.

    Google Scholar 

  31. C.J. Smithells: Metals Reference Book, 5th ed., Butterworth and Co., London, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onsøien, M.I., Gundersen, Ø., Grong, Ø. et al. A process model for the microstructure evolution in ductile cast iron: Part I. the model. Metall Mater Trans A 30, 1053–1068 (1999). https://doi.org/10.1007/s11661-999-0158-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0158-x

Keywords

Navigation