Skip to main content
Log in

Application of percolation theory in predicting shape distortion during liquid-phase sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article shows how percolation theory provides a theoretical model for the onset of shape distortion in liquid-phase sintering. The model uses an equivalent bond number per grain, with bond strength depending on the relative intergrain bond size. Based on this study, shape distortion is resisted by a rigid compact, which depends on the solid grains forming an infinite chainlike structure that spreads throughout the system. A sufficient condition requires contiguity above a critical value to form an infinite chainlike structure. The critical value is near 0.38. This is in good agreement with experimental results obtained with the W-Ni-Fe system sintered both under microgravity and on Earth. The effect of the gravitational force on the sufficient condition to avoid shape distortion is not significant. The effect of gravitational field on shape distortion becomes apparent only after the start of distortion, determining the final profile of a distorted compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Broadbent and J.M. Hammersley: Percolation Processes, Proceedings of the Cambridge Philological Society, 1957, vol. 53, pp. 629–45.

    CAS  Google Scholar 

  2. R.M. German: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1553–67.

    CAS  Google Scholar 

  3. R.M. German: Liquid Phase Sintering, Plenum Press, New York, NY, 1985.

    Google Scholar 

  4. K.S. Hwang, R.M. German, and F.V. Lenel: Metall. Trans. A, 1987, vol. 18A, pp. 11–17.

    CAS  Google Scholar 

  5. J.L. Johnson, A. Upadhyaya, and R.M. German: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 857–66.

    CAS  Google Scholar 

  6. C.M. Kipphut, A. Bose, S. Farooq, and R.M. German: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 1905–13.

    CAS  Google Scholar 

  7. R.M. German: Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1991, vol. 4, pp. 183–94.

    Google Scholar 

  8. R. Raman and R.M. German: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 653–59.

    CAS  Google Scholar 

  9. R.M. German: Metall. Mater Trans. A, 1995, vol. 26A, pp. 279–88.

    CAS  Google Scholar 

  10. C.M. Kipphut, T. Kishi, and R.M. German: Progress in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1987, vol. 43, pp. 93–106.

    Google Scholar 

  11. S.S. Mani and R.M. German: Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1991, vol. 4, pp. 195–212.

    Google Scholar 

  12. C.M. Kipphut, A. Bose, T. Kishi, and R.M. German: Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1989, vol. 2, pp. 415–29.

    Google Scholar 

  13. D. Heaney, R.M. German, and I. Ahn: Advances in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1993, vol. 2, pp. 169–80.

    Google Scholar 

  14. G. Deutscher, R. Zallen, and J. Adler: Percolation Structures and Processes, Adam Hilger, Bristol, United Kingdom, 1983.

    Google Scholar 

  15. M. Sahini: in The Mathematics and Physics of Disordered Media, Series of Lecture Notes in Mathematics, B.D. Hughes and B.W. Ninham, Springer-Verlag, Berlin, NY, Minneapolis, MN, 1983. vol. 1035, pp. 314–46.

    Chapter  Google Scholar 

  16. A. Bunde and S. Havlin: Fractals and Disordered Systems, Springer, Berlin, 1991.

    Google Scholar 

  17. D. Stauffer and A. Aharony: Introduction to Percolation Theory, 2nd ed., Taylor & Francis Ltd., London, 1992.

    Google Scholar 

  18. B.D. Hughes: Random Environments and Random Walks, Oxford University Press, London, 1993.

    Google Scholar 

  19. P.J. Flory: J. Am. Chem. Soc., 1941, vol. 63, pp. 3083–90.

    Article  CAS  Google Scholar 

  20. W.H. Stockmayer: J. Chem. Phys., 1943, vol. 11, pp. 45–55.

    Article  CAS  Google Scholar 

  21. M. Sahimi: Applications of Percolation Theory, Taylor & Francis Ltd., London, 1994.

    Google Scholar 

  22. S. Redner: in The Mathematics and Physics of Disordered Media, Series of Lecture Notes in Mathematics, B.D. Hughes and B.W. Ninham, eds., Minneapolis, MN, 1983, Springer-Verlag, Berlin, NY, vol. 1035, pp. 184–200.

    Chapter  Google Scholar 

  23. B.J. Last and D.J. Thouless: Phys. Rev. Lett., 1971, vol. 27, pp. 1719–21.

    Article  CAS  Google Scholar 

  24. I. Balberg: Phil. Mag., 1987, vol. B56, pp. 991–1003.

    Google Scholar 

  25. U. Alon, I. Balberg, and A. Drory: Phys. Res. Lett., 1990, vol. 66, pp. 1879–2882.

    Google Scholar 

  26. A. Drory, I. Balberg, U. Alon, and B. Berkowitz: Phys. Rev., 1991, vol. A43, pp. 6604–12.

    Google Scholar 

  27. H. Scher and R. Zallen: J. Chem. Phys., 1970, vol. 53, pp. 3759–61.

    Article  CAS  Google Scholar 

  28. V.K.S. Shante and S. Kirkpatrick: Adv. Phys., 1971, vol. 20, pp. 325–57.

    Article  Google Scholar 

  29. G.R. Jerauld, L.E. Scriven, and H.T. Davis: J. Phys., 1984, vol. C17, pp. 3429–39.

    Google Scholar 

  30. R.M. German: Sintering Theory and Practice, Wiley-Interscience, New York, NY, 1996, pp. 255–58.

    Google Scholar 

  31. F.V. Lenel, H.H. Hausner, E. Hayashi, and G.S. Ansell: Powder Metall., 1961, vol. 8, pp. 25–36.

    CAS  Google Scholar 

  32. F.V. Lenel, H.H. Hausner, A.E. Shanshoury, J.G. Early, and G.S. Ansell: Powder Metall., 1962, vol. 10, pp. 190–98.

    Google Scholar 

  33. F.V. Lenel, H.H. Hausner, O.V. Roman, and G.S. Ansell: Trans. TMS-AIME, 1963, vol. 227, pp. 640–44.

    CAS  Google Scholar 

  34. J. Liu, Y. Liu, A. Lal, and R. M. German: Scripta Metall., 1999, vol. 40, pp. 1221–27.

    Article  CAS  Google Scholar 

  35. W.D. Klopp and P.L. Raffo: “Effects of Purity and Structure on Recrystallization, Gain Growth, Ductility, Tensile and Greep Properties of Arc-Melted Tungsten,” NASA-TND-2053, Lewis Research Center, Cleveland, OH, 1964.

    Google Scholar 

  36. A. Upadhyaya: Ph.D. Thesis, Pennsylvania State University, University Park, PA, 1998.

    Google Scholar 

  37. R.M. German: Metall. Trans. A, 1985, vol. 16A, pp. 1247–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Upadhyaya, A. & German, R.M. Application of percolation theory in predicting shape distortion during liquid-phase sintering. Metall Mater Trans A 30, 2209–2220 (1999). https://doi.org/10.1007/s11661-999-0033-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0033-9

Keywords

Navigation