Skip to main content

Advertisement

Log in

Copper coatings for minimization of retention and permeation of implanted tritium in aluminum alloy 6061

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Copper coatings deposited on Al-6061 substrates by radio frequency magnetron sputtering, to prevent the retention and permeation of energetically implanted tritium in Al-6061, were evaluated by a variety of characterization techniques. The coatings, weighing in the 0.03 to 0.088 kg/m2 range, were smooth and had a fine grain structure. They contained the intermetallic phases Cu9Al4 and CuAl2 as well as copper. The fractions of Al and Cu in any coating increased and decreased, respectively, with increasing depth below the surface. Furthermore, the fractions of Al and Cu on the coating surface decreased and increased, respectively, with increasing coating weight. There was no texture or preferred orientation in the Cu phase of the coatings. A significant amount of oxygen was also detected at the original substrate surface. Residual stress measurements revealed that, in both Cu and CuAl2, the stresses in the coating plane were compressive, while the stress normal to the coating plane was zero in Cu but tensile in CuAl2. The shear-stress components were, however, negligible in both the Cu and CuAl2 phases. In the coating plane, the residual stress in Cu was always much smaller than that in the CuAl2 phase. Bond-strength measurements using tensile-pull testing provided a lower limit of the bond strength of about 2 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., J.I. Kroschwitz, ed., John Wiley and Sons, New York, NY, 1991, vol. 8, pp. 1–30.

    Google Scholar 

  2. D.V. Winterfeldt and E. Schweitzer: Interfaces, 1998, vol. 28 (1), pp. 92–112.

    Article  Google Scholar 

  3. S.A. Malloy, W.F. Sommer, R.D. Brown, J.E. Roberts, J. Eddleman, E. Zimmermann, and G. Willcutt: in Materials for Spallation Neutron Sources, M.S. Wechsler, L.K. Mansur, C.L. Snead, and W.F. Sommer, eds., TMS, Warrendale, PA, 1998, pp. 131–38.

    Google Scholar 

  4. D.F. Cowgill and R.A. Causey: J. Nucl. Mater., in press.

  5. B.L. Doyle: J. Nucl. Mater., 1982, vols. 111–112, pp. 628–35.

    Article  Google Scholar 

  6. K. Kamada, A. Sagara, N. Sugiyama, and S. Yamaguchi: J. Nucl. Mater., 1984, vols. 128–129, pp. 664–69.

    Article  Google Scholar 

  7. S. Yamaguchi, S. Nagata, K. Takahiro, and S. Yamamoto: J. Nucl. Mater., 1995, vols. 220–222, pp. 878–82.

    Article  Google Scholar 

  8. T. Tanabe, Y. Furuyama, N. Saitoh, and S. Imoto: Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 706–14.

    CAS  Google Scholar 

  9. M.R. Louthan, Jr. and R.G. Derrick: Corros. Sci., 1975, vol. 15 (9), pp. 565–77.

    Article  CAS  Google Scholar 

  10. Engineering Materials Handbook, C.L. Mantell, ed., McGraw-Hill, New York, NY, 1958, p. 36.41.

    Google Scholar 

  11. B. Window and N. Savvides: J. Vac. Sci. Technol., 1986, vol. A4 (2), pp. 196–02.

    Google Scholar 

  12. Annual Book of ASTM Standards, Section 2, Nonferrous Metal Products, ASTM, Philadelphia, PA, 1995, vol. 02.05, standard B253-87.

  13. S. Craig and G.L. Harding: J. Vac. Sci. Technol., 1981, vol. 19 (2), pp. 205–15.

    Article  CAS  Google Scholar 

  14. X-ray Powder Diffraction Files, ASTM, Philadelphia, PA, 1967, PDE Nos. 04-0787, 04-0836, 24-0003, and 25-0012.

  15. L.G. Schulz: J. Appl. Phys., 1949, vol. 20, pp. 1030–36.

    Article  Google Scholar 

  16. D.P. Tracy and D.B. Knorr: J. Electronic Mater., 1993, vol. 22 (6), pp. 611–16.

    Google Scholar 

  17. J.M.E. Harper, K.P. Rodbell, E.G. Colgan, and R.H. Hammond: J. Appl. Phys., 1997, vol. 82 (9), pp. 4319–26.

    Article  CAS  Google Scholar 

  18. C.A. Chang: J. Appl. Phys., 1990, vol. 67 (1), pp. 566–69.

    Article  CAS  Google Scholar 

  19. H. Krause and A. Haase: in Experimental Techniques of Texture Analysis, H.J. Bunge, ed., DGM Informationsgesellschaft Verlag, Oberursel, Germany, 1986, pp. 405–08.

    Google Scholar 

  20. I.C. Noyan and J.B. Cohen: REsidual Stress: Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987, p. 102.

    Google Scholar 

  21. D.Y. Jang, T.R. Watkins, K.J. Kozaczek, C.R. Hubbard, and O.B. Cavin: Wear, 1996, vol. 194, pp. 168–73.

    Article  CAS  Google Scholar 

  22. I.C. Noyan and J.B. Cohen: Residual Stress: Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987, pp. 125–30.

    Google Scholar 

  23. Smithells Metals Reference Book, 6th ed., E.A. Brandes, ed., Butterworth and Company Ltd., London, 1983, p. 15–2.

    Google Scholar 

  24. L. Guillet and R. Le Roux: in Intermetallic Compounds, J.H. Westbrook, ed., Robert E. Krieger Publishing Company, Huntington, NY, 1977, p. 457.

    Google Scholar 

  25. M. Alam, D.E. Peebles, and J.A. Ohlhausen: J. Adhesion Sci. Technol., 1993, vol. 7 (12), pp. 1309–22.

    CAS  Google Scholar 

  26. M. Alam, Feng He, D.E. Peebles, J.A. Ohlhausen, and D.R. Tallant: J. Adhesion Sci. Technol., 1995, vol. 9 (6), pp. 653–79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inal, M.Y., Alam, M. Copper coatings for minimization of retention and permeation of implanted tritium in aluminum alloy 6061. Metall Mater Trans A 30, 2191–2199 (1999). https://doi.org/10.1007/s11661-999-0031-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0031-y

Keywords

Navigation