Skip to main content
Log in

The alstruc microstructure solidification model for industrial aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The model predicts the solidification path in the aluminum corner of the AlCuFeMgMnSi phase diagram, with compensation for solid-state diffusion and particle growth undercoolings. Input is the composition and the rate of cooling. Output is the temperature vs fraction solid; the solid-state concentration profiles; the type, volume fraction, and size of the intermetallic particles; and also the temperature-dependent thermal conductivity, density, specific heat, and heat of fusion for use in thermal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Chen, Y.Y. Chuang, Y.A. Chang, and M.G. Chu: Met. Trans. A, 1991, vol. 22A, pp. 2837–48.

    CAS  Google Scholar 

  2. Sinn-Wen Chen and Y. Austin Chang: Metall. Trans. A, 1992, vol. 23A, pp. 1038–43.

    CAS  Google Scholar 

  3. D.K. Banerjee, M.T. Samonds, U.R. Kattner, and W.J. Boettinger: in Sp97 Solidification Processing, J. Beach and H. Jones, eds., University of Sheffield, Sheffield, United Kingdom, 1997, pp. 354–57.

    Google Scholar 

  4. C.H. Moon, Y. Zuo, F.Y. Xie, and Y.A. Chang: in Sp97 Solidification Processing, J. Beach and H. Jones, eds., University of Sheffield, Sheffield, United Kingdom, 1997, pp. 367–71.

    Google Scholar 

  5. T. Kraft, M. Rettenmayr, and H.E. Exner: Modelling Simul. Mater. Sci. Eng., 1996, vol. 4, pp. 161–77.

    Article  CAS  Google Scholar 

  6. J. Iglessis, C. Frantz, and M. Gantois: Mem. Sci. Rev. Metall., 1977, vol. 73, pp. 237–42.

    Google Scholar 

  7. C.M. Adam and L.M. Hogan: J. Aus. Inst. Met., 1972, vol. 17, pp. 81–90.

    CAS  Google Scholar 

  8. L. Backerud: Jernkont. Ann., 1968, vol. 152, pp. 109–38.

    CAS  Google Scholar 

  9. H.D. Broody and M.D. Flemings: Trans. TMS-AiME, 1966, vol. 236, pp. 615–24.

    Google Scholar 

  10. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  11. A. Roosz and H.E. Exner: Acta Metall. Mater., 1990, vol. 38, pp. 375–80.

    Article  CAS  Google Scholar 

  12. K.S. Yeum, V. Laxmanan, and D.R. Poirier: Metall. Trans. A, 1989, vol. 20A, pp. 2847–56.

    CAS  Google Scholar 

  13. V.R. Voller and S. Sundarraj: Mater. Sci. Technol., 1993, vol. 9, pp. 474–81.

    CAS  Google Scholar 

  14. A.L. Dons: Z. Metallkd., 1990, vol. 81, pp. 484–89.

    CAS  Google Scholar 

  15. Y. Langsrud, A.L. Dons, E.K. Jensen, and S. Brusethaug: ICAA3, 1992, vol. 1, pp. 15–20.

    Google Scholar 

  16. H.C. Flemings, D.R. Poirier, R.V. Barone, and H.D. Broody: J. Iron Steel Inst., 1970, vol. 208, pp. 371–81.

    CAS  Google Scholar 

  17. A. Mortensen: Metall. Trans. A, 1989, vol. 20A, pp. 247–53.

    CAS  Google Scholar 

  18. T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, and H. Esaka: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 873–82.

    Google Scholar 

  19. M. Basaran: Metall. Trans. A, 1981, vol. 12A, pp. 1235–43.

    Google Scholar 

  20. A.J.W. Ogilvy and D.H. Kirkwood: Appl. Sci. Res., 1987, vol. 44, pp. 43–49.

    Article  CAS  Google Scholar 

  21. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1992.

    Google Scholar 

  22. A.A. Howe: Appl. Sci. Res., 1987, vol. 44, pp. 51–59.

    Article  CAS  Google Scholar 

  23. G. Phragmen: J. Inst. Met., 1950; vol. 77, pp. 489–552.

    CAS  Google Scholar 

  24. H.W.L. Phillips and P.C. Varley: J. Inst. Met., 1942, vol. 69, pp. 317–50.

    Google Scholar 

  25. H.W.L. Phillips: Annotated Equilibrium Diagrams of Some Aluminum Alloy Systems, The Institute of Metals, London, 1959.

    Google Scholar 

  26. H.W.L. Phillips: Equilibrium Diagrams of Aluminum Alloy Systems, The Aluminum Development Association, London, 1961.

    Google Scholar 

  27. W.T. Denholm, J.D. Esdaile, N.G. Siviour, and B.W. Wilson: Metall. Trans. A, 1984, vol. 15A, pp. 1311–17.

    CAS  Google Scholar 

  28. B. Sundman, B. Jansson, and J.O. Andersson: Proc. ASM Meeting, Orlando, FL, 1986.

  29. H.L. Lukas, J. Wess, and E.T. Henig: CALPHAD, 1982, vol. 6, pp. 229–51.

    Article  CAS  Google Scholar 

  30. P. Kolby, M. Seiersten, C. Simensen, and J. Tibbals: SINTEF, Oslo, Norway, 1989–1999, private communications.

    Google Scholar 

  31. H. Feufel, T. Godecke, H.L. Lucas, F. Sommer: J. Alloys Compunds, 1997, vol. 247, pp. 31–42.

    Article  CAS  Google Scholar 

  32. A.L. Dons: Z. Metallkd., 1991, vol. 82, pp. 684–88.

    CAS  Google Scholar 

  33. A.L. Dons, E.K. Jensen, J. Voje, and J. Rødseth: Modelling of Casting, Welding and Advanced Solidification Processes VI, TMS, Palm Coast, Florida 1993, pp. 37–44.

    Google Scholar 

  34. B. Chalmers: Principles of Solidification, John Wiley & Sons, New York, NY, 1964.

    Google Scholar 

  35. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1992.

    Google Scholar 

  36. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys. Volume 1: Wrought Alloys. Skanaluminum/Universitetsforlaget, Oslo, 1986.

    Google Scholar 

  37. J.A. Juarez-Islas and H. Jones: Acta Metall., 1987, vol. 35, pp. 499–507.

    Article  CAS  Google Scholar 

  38. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1992, pp. 120–22.

    Google Scholar 

  39. H. Hilland: Diploma work at NTH, Trondheim, Norway, 1988.

  40. E. Trømborg: Ph.D. Thesis, NTH, Trondheim, Norway, 1994.

    Google Scholar 

  41. A. Hakonsen and D. Mortensen: in Modelling of Casting, Welding and Advanced Solidification Processes, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, No. 7, pp. 763–70.

    Google Scholar 

  42. L.H. Kallien, J.C. Sturm, F. Odor, and P. Bellity: AFS Trans., 1992, vol. 100, pp. 1067–77.

    Google Scholar 

  43. F. Kutner and G. Lang: Aluminum, 1970, vol. 46, pp. 691–94.

    CAS  Google Scholar 

  44. D. Altenpohl: Aluminum und Aluminumlegierungen, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  45. J.E. Hatch: Aluminum Properties and Physical Metallurgy, ASM, Metals Park, Ohio 1984.

    Google Scholar 

  46. C.J. Smithell: Metals Reference Book, Butterworth and Co., London, 1955, 1983.

    Google Scholar 

  47. P.G. Klemens and R.K. Williams: Int. Met. Rev., 1986, vol. 31, pp. 197–215.

    CAS  Google Scholar 

  48. Metals Handbook, 9th ASM, Metals Park, OH, 1979, vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dons, A.L., Jensen, E.K., Langsrud, Y. et al. The alstruc microstructure solidification model for industrial aluminum alloys. Metall Mater Trans A 30, 2135–2146 (1999). https://doi.org/10.1007/s11661-999-0025-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0025-9

Keywords

Navigation