Skip to main content
Log in

Role of gaseous environment and secondary precipitation in microstructural degradation of Cr-Mo steel weldments at high temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is an attempt to understand the combined role of variations in oxidizing environment and secondary precipitation, in the microstructurally different regions of a standard Cr-Mo steel weldment, on the intensity of internal oxidation during high-temperature oxidation in air and steam environments. Samples of the weld-metal, heat-affected zone (HAZ), and base-metal regions were separated from the weldment of 2.25Cr-1 Mo steel and oxidized in the environments of air and steam at 873 K. The oxide scales and underlying subscales were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and electron probe microanalysis (EPMA). Extensive internal oxidation and oxidation-induced void formation in the subscale zone and grain-boundary cavitation in the neighboring region were found to occur during oxidation in the steam environment. However, the internal oxidation and void formation were much more extensive in the subscale regions of the HAZ than in the subscales of the weld-metal and base-metal regions. As a result, the alloy matrix in the area neighboring the subscale region of the HAZ specimen suffered extensive grain-boundary cavitation. This behavior has been attributed to a rather specific combination and complex interplay of the environment, alloy microstructure, oxidizing temperature, and nature of the resulting external scale in causing and sustaining internal oxidation. The article also discusses the role of internal oxidation-assisted microstructural degradation in deteriorating the service life of components of 2.25Cr-1Mo steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferritic Steels for High Temperature Applications: ASM Int. Conf., Warren, PA, 1981, A.K. Khare, ed., ASM, Metals Park, OH, 1981.

    Google Scholar 

  2. Proc. BNES Int. Conf. Ferritic Steels for Fast Reactor Steam Generators, S.F. Pugh and EA. Little, eds., BNES, London, 1978.

    Google Scholar 

  3. T. Wada and G.T. Eldis: Ferritic Steels for High Temperature Applications: ASM Int. Conf., Warren, PA, 1981, A.K. Khare, ed., ASM, Metals Park, OH, 1981, pp. 343–62.

    Google Scholar 

  4. J. Bland: Weld. J.-Res. Suppl., 1956, vol. 35, pp. 181s-194s.

    Google Scholar 

  5. L.S. Mandich, E.L.Fogelmen, and J.A. Gulya: Symp. Heat Treated Steel for Elevated Temperature Services ASME, New Orleans, LA, 1956.

  6. E.W. Colebeck and J.R. Rait: “High Temperature Steel and Alloys for Gas Turbines,” 1st Special Report 43, 1952.

  7. K. Laha, K.B.S. Rao, and S.L. Mannan: Mater. Sci. Eng., 1990, vol. A129, pp. 183–95.

    CAS  Google Scholar 

  8. “ASME Boiler and Pressure Vessel Code,” Code, Case N-47, ASME, Fairfield, NJ, 1986.

  9. B. Chew and P. Harris: Met. Constr., 1979, May, pp. 11–16.

  10. R.K. Singh Raman: Metall. Mater. Trans. A., 1995, vol. 26A, pp. 1847–58.

    CAS  Google Scholar 

  11. R.K. Singh Raman and A.K. Tyagi: Mater. Sci. Eng., 1994, vol. A18, pp. 97–107.

    Google Scholar 

  12. R.K. Singh Raman and J.B. Gnanamoorthy: Corr. Sci., 1993, vol. 34, pp. 1275–88.

    Article  Google Scholar 

  13. J. Pilling and N. Ridley: Metall. Trans. A, 1982, vol. 13A, pp. 557–63.

    Google Scholar 

  14. P. Roy and T. Lauritzen: Weld. J.-Res. Suppl., 1986, vol. 65, pp. 45s-52s.

    Google Scholar 

  15. SD. Mann and B.C. Muddle: Proc. Microstructure and Mechanical Properties of Ageing Material, TMS, Warrendale, PA, 1993, pp. 301–08.

    Google Scholar 

  16. R.K. Singh Raman and J.B. Gnanamborthy: J. Mater. Sci., 1992, vol. 27, pp. 3435–41.

    Article  Google Scholar 

  17. R.K. Singh Raman, A.S. Khanna, B.K. Choudhary, and J.B. Gnanamoorthy: Mater. Sci. Eng. A, 1991, vol. 148, pp. 299–306.

    Article  Google Scholar 

  18. R.K. Singh Raman, A.S. Khanna, and J.B. Gnanamoorthy: Proc. 1st Int. Conf. on Microscopy of Oxidation, M.J. Bennett and G.W. Lorimer, eds., Cambridge, United Kingdom, 1990, pp. 54–58.

  19. R.K. Singh Raman, A.S. Khanna, R.K. Tiwari, and J.B. Gnanamoorthy: Oxid. Met., 1992, vol. 37, pp. 1–12.

    Article  Google Scholar 

  20. N. Birks and G.M. Meyer: Introduction to High Temperature Oxidation of Metals, Edward Arnold, London, 1982.

    Google Scholar 

  21. D.L. Douglass: Mater. Sci. Eng., 1968, vol. 3, pp. 255–54.

    Google Scholar 

  22. E.C. Scaife and P.L. James: Met. Sci. J., 1968, vol. 2, pp. 217–20.

    Article  Google Scholar 

  23. P. Kofstad: High Temperature Corrosion, Elsevier, New York, NY, 1988.

    Google Scholar 

  24. H.S. Hsu: Oxid. Met., 1986, vol. 26, pp. 315–32.

    Article  CAS  Google Scholar 

  25. A. Atkinson: Rev. Modern Phys., 1985, vol. 57, pp. 437–70.

    Article  CAS  Google Scholar 

  26. P.L. Surman and J.E. Castle: Corr. Sci., 1969, vol. 9, pp. 771–77.

    Article  CAS  Google Scholar 

  27. P.L. Effertz: Proc. 5th Int. Congr. Metallic Corrosion, NACE, Tokyo, 1972, p. 920.

    Google Scholar 

  28. L. Tomlinson and N.J. Cory: Corr. Sci., 1989, vol. 29, pp. 939–65.

    Article  CAS  Google Scholar 

  29. I.E. Klein, J. Sharon, and A.E. Yaniv: Scripta Metall., 1981, vol. 15, pp. 41–44.

    Article  Google Scholar 

  30. P. Mayer and A.V. Manolescu: High Temperature Corrosion, NACE, Houston, TX, 1981, p. 368.

    Google Scholar 

  31. N.J. Cory and T.H. Herrington: Oxid. Met., 1987, vol. 28, pp. 237–58.

    Article  CAS  Google Scholar 

  32. R.K. Singh Raman: Metall. Mater. Trans., 1998, vol. 29A, pp. 577–86.

    CAS  Google Scholar 

  33. C. Phaniraj, M. Valson, S.L. Mannan, and P. Rodriquez: Proc. Workshop-on Oxidation of Metals and Alloys, Kalpakkam, 1984, Indian Inst. of Metals, Kalpakkam Branch, 1984, pp. 171–95.

    Google Scholar 

  34. R. Widmer and N.J. Grant: Trans. ASME, 1960, vol. D82, p. 882.

    Google Scholar 

  35. H.E. McCoy, W.R. Martin, and J.R. Weir: Proc. Inst. Environ. Sci., 1961, p. 163.

  36. I.R. Kramer and N. Balasubramanian: Metall. Trans., 1973, vol. 4, pp. 431–36.

    CAS  Google Scholar 

  37. P. Shahinian: Trans. ASM, 1957, vol. 49, p. 862.

    Google Scholar 

  38. W.R. Johnson, C.R. Barrett, and W.D. Nix: Metall. Trans., 1972, vol. 3, pp. 695–98.

    CAS  Google Scholar 

  39. H. Howarth: Corr. Vol. I, L.L. Shrier ed., Newnes-Butterworths, London, pp. 7:13-7:44.

  40. H.H. Bleakney: Can. J. Technol., 1952, vol. 30, p. 340.

    CAS  Google Scholar 

  41. C.E. Price: Acta Metall., 1966, vol. 14, pp. 1787–95.

    Article  CAS  Google Scholar 

  42. P. Rodriguez: Trans. Ind. Inst. Met., 1967, vol. 20, pp. 213–20.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh Raman, R.K. Role of gaseous environment and secondary precipitation in microstructural degradation of Cr-Mo steel weldments at high temperatures. Metall Mater Trans A 30, 2103–2113 (1999). https://doi.org/10.1007/s11661-999-0021-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0021-0

Keywords

Navigation