Skip to main content
Log in

A general numerical method to solve for dislocation configurations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The shape of a mechanically equilibrated dislocation line is of considerable interest in the study of plastic deformation of metals and alloys. A general numerical method for finding such configurations in arbitrary stress fields has been developed. Analogous to the finite-element method (FEM), a general dislocation line is approximated by a series of straight segments (elements) bounded by nodes. The equilibrium configuration is found by minimizing the system energy with respect to nodal positions using a Newton-Raphson procedure. This approach, termed the finite-segment method (FSM), confers several advantages relative to segment-based, explicit formulations. The utility, generality, and robustness of the FSM is demonstrated by analyzing the Orowan bypass mechanism and a model of dislocation generation and equilibration at misfitting particles. Energy differences from previous analytical methods based on simple loop shapes are significant, up to 80 pct. Explicit expressions for the coordinate transformations, energies, and forces required for numerical implementation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. DeWit and J.S. Koehler: Phys. Rev., 1959, vol. 116, p. 1113.

    Article  CAS  Google Scholar 

  2. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1982.

    Google Scholar 

  3. R.O. Scattergood and D.J. Bacon: Phil. Mag., 1975, vol. 31, pp. 179–98.

    CAS  Google Scholar 

  4. L.M. Brown: Phil. Mag., 1964, vol. 10, pp. 441–66.

    Google Scholar 

  5. M.O. Peach and J.S. Koehler: Phys. Rev., 1950, vol. 80, p. 436.

    Article  Google Scholar 

  6. M.F. Ashby and L. Johnson: Phil. Mag., 1969, vol. 18, pp. 1009–22.

    Google Scholar 

  7. X.J. Xin, R.H. Wagoner, and G.S. Daehn: Acta Mater., 1998, vol. 46, pp. 6131–44.

    Article  CAS  Google Scholar 

  8. D.J. Bacon: Phys. Status Solidi, 1967, vol. 23, p. 527.

    CAS  Google Scholar 

  9. A.J.E. Foreman: Phil. Mag., 1967, vol. 15, pp. 1011–21.

    CAS  Google Scholar 

  10. A.J.E. Foreman, P.B. Hirsch, and F.J. Humphreys: Proc. Conf. on Fundamental Aspects of Dislocation Theory, National Bureau of Standards Publication, National Bureau of Standards, Gaithersburg, MD, 1970, vol. 317, p. 1083.

    Google Scholar 

  11. D.J. Bacon, U.F. Kocks, and R.J. Scatergood: Phil. Mag., 1973, vol. 28, pp. 1241–63.

    Google Scholar 

  12. L.A. Gore: Ph.D. Thesis, Stanford University, Stanford, CA, 1981.

    Google Scholar 

  13. D.T. Knight and B. Burton: Phil. Mag. A, 1989, vol. 59, pp. 1027–44.

    Google Scholar 

  14. D.T. Knight and B. Burton: Scripta Metall., 1989, vol. 23, pp. 429–34.

    Article  Google Scholar 

  15. M.S. Duesbery and K. Sadananda: Phil. Mag. A, 1991, vol. 63, pp. 535–58.

    Google Scholar 

  16. K.W. Schwarz and J. Tersoff: Appl. Phys. Lett., 1996, vol. 69, pp. 1220–22.

    Article  CAS  Google Scholar 

  17. K.W. Schwarz: Appl. Phys. Lett., 1997, vol. 78, pp. 4785–88.

    Article  CAS  Google Scholar 

  18. K.W. Schwarz and F.K. LeGoues: Appl. Phys. Lett., 1997, vol. 78, pp. 1877–80.

    Google Scholar 

  19. H.M. Zbib, M.R. Rhee, and J.P. Hirth: Int. J. Mech. Sci., 1998, vol. 40, pp. 113–27.

    Article  Google Scholar 

  20. L.P. Kubin, G. Canova, M. Conat, B. Devincre, V. Pontikis, and Y. Brechet: Solid State Phenomena, 1992, vols. 23–24, p. 455.

    Article  Google Scholar 

  21. B. Devincre and M. Condat: Acta Metall. Mater., 1992, vol. 40, pp. 2629–37.

    Article  Google Scholar 

  22. A. Moulin, M. Condat, and L.P. Kubin: Acta Metall. Mater., 1997, vol. 45, pp. 2339–48.

    CAS  Google Scholar 

  23. B.A. Bilby, R. Bullough, and E. Smith: Proc. R. Soc., 1955, vol. A231, p. 263.

    CAS  Google Scholar 

  24. Y.T. Keum, E. Nakamachi, R.H. Wagoner, and J.K. Lee: Int. J. Num. Meth. Eng., 1990, vol. 30, pp. 1471–1502.

    Article  Google Scholar 

  25. D. Zhou and R.H. Wagoner: Int. J. Mech. Sci., 1997, vol. 39, pp. 1363–84.

    Article  Google Scholar 

  26. D.J. Bacon, D.M. Barnett, and R.O. Scattergood: Progr. Mater. Sci., 1979, vol. 23, p. 51.

    Article  Google Scholar 

  27. M.F. Ashby, S.H. Gelles, and L.E. Tanner: Phil. Mag., 1969, vol. 18, p. 757.

    Google Scholar 

  28. Ching-Yao Huang and Glenn S. Daehn: Acta Mater., 1996, vol. 44, p. 1035.

    Article  CAS  Google Scholar 

  29. Ching-Yao Huang and Glenn S. Daehn: Acta Mater., 1997, vol. 45, p. 4283.

    Article  CAS  Google Scholar 

  30. Ching-Yao Huang and Glenn S. Daehn: Net Shape Processing of Powder Materials, S. Krishnaswami, R.M. McMeeking, and J.R.L. Trasorras, eds., ASME, Fairfield, NJ, 1995, AMD-vol. 216, p. 69.

    Google Scholar 

  31. J.R. Rice and R. Thomson: Phil. Mag., 1974, vol. 29, p. 73.

    CAS  Google Scholar 

  32. S.J. Zhou and R. Thomson: J. Mater. Res., 1991, vol. 6, p. 639.

    Google Scholar 

  33. X.J. Xin, R.H. Wagoner, and G.S. Daehn: Scripta Mater., 1998, vol. 39, pp. 397–407.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, X.J., Wagoner, R.H. & Daehn, G.S. A general numerical method to solve for dislocation configurations. Metall Mater Trans A 30, 2073–2087 (1999). https://doi.org/10.1007/s11661-999-0018-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0018-8

Keywords

Navigation