Skip to main content
Log in

Nonstationary hot wire method with silica-coated probe for measuring thermal conductivities of molten metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nonstationary hot wire method with a silica-coated probe has been developed to measure thermal conductivities of molten metals at high temperatures. Measurements were carried out on mercury and lead as test liquids. The thermal conductivities of liquid mercury ranged between 7.6 and 8.1 W/m K at temperatures between 273 and 293 K, and those of molten lead displayed constant values of about 15 W/m K at temperatures between 673 and 973 K. Factors affecting the thermal conductivity measurement using this method have been discussed. It has been concluded that the nonstationary hot wire method with an insulator-coated probe can be applied to various molten metals, as long as materials for probe coating are pertinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.C. Mills, B.J. Monaghan, and B.J. Keene: “Thermal Conductivities of Molten Metals Part 1 Pure Metals,” NPL Report CMMT(A)53, NPL, Teddington, Middlesex, United Kingdom, Jan. 1997.

    Google Scholar 

  2. R.P. Yurchak and L.P. Filippov: High Temp., 1965, vol. 3, pp. 290–291.

    Google Scholar 

  3. R. Evangelisti and F. Isacchini: Int. J. Heat Mass Transfer, 1965, vol. 8, pp. 1303–17.

    Article  CAS  Google Scholar 

  4. A. Henry, D.G. Webber, and C.F. Robert: Trans. ASME, 1955, vol. 77 pp. 97–102.

    Google Scholar 

  5. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: J. Appl. Phys., 1961, vol. 32, pp. 1679–84.

    Article  CAS  Google Scholar 

  6. K. Yamamoto, T. Abe, and S. Takasu: Jpn. J. Appl. Phys., 1991, vol. 30, pp. 2423–26.

    Article  CAS  Google Scholar 

  7. E. Takasuka, E. Tokizaki, K. Terashima, and S. Kimura: Proc. 4th Asian Thermophysical Properties Conf. (Tokyo), 1995, pp. 89–92.

  8. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, United Kingdom, 1959.

    Google Scholar 

  9. J.H. Blackwell: J. Appl. Phys., 1954, vol. 25, p. 137.

    Article  CAS  Google Scholar 

  10. Y. Nagasaka and A. Nagashima: Trans. J. Soc. Mech. Eng., 1981, vol. 47, pp. 1323–31.

    CAS  Google Scholar 

  11. A. Alloush, W.B. Gosney, and W.A. Wakeham: Int. J. Thermophys., 1982, vol. 3 pp. 225–35.

    Article  CAS  Google Scholar 

  12. R.M. DiGuilio and A.S. Teja: Int. J. Thermophys., 1992, vol. 13, pp. 575–92.

    Article  CAS  Google Scholar 

  13. J.G. Bleazard and A.S. Teja: J. Chem. Eng. Data, 1995, vol. 40, pp. 732–37.

    Article  CAS  Google Scholar 

  14. S. Nakamura, T. Hibiya, F. Yamamoto, and T. Yokota: Int. J. Thermophys., 1991, vol. 12, pp. 783–90.

    Article  CAS  Google Scholar 

  15. Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens: Thermophysical Properties of Matter Vol. 1 Thermal Conductivity of Metallic Elements and Alloys, IFI/Plenum Press, New York, NY, 1970.

    Google Scholar 

  16. Y. Kawai and Y. Shiraishi: Handbook of Physico-Chemical Properties at High Temperatures, The Iron and Steel Institute of Japan, Tokyo, 1988.

    Google Scholar 

  17. National Astronomical Observatory: Chronological Scientific Tables, Maruzen Co., Tokyo, 1994.

    Google Scholar 

  18. Y.I. Dutchak and P.V. Panasynk: Sov. Phys. Solid State, 1967, vol. 8, pp. 2244–46.

    Google Scholar 

  19. R. Berman and D.K.C. MacDonald: Proc. R. Soc. London, 1951, vol. A209, pp. 268–275.

    Google Scholar 

  20. L.P. Filippov: Int. J. Heat Mass Tansfer, 1966, vol. 9 pp. 681–91.

    Article  CAS  Google Scholar 

  21. E.F.M. Van der Held and F.G. Van Drunen: Physica, 1949, vol. 15, pp. 865–70.

    Article  Google Scholar 

  22. K. Hayashi, M. Fukui, and I. Uei: Yougyou Kyokai-shi, 1974, vol. 82, pp. 202–08.

    CAS  Google Scholar 

  23. J.G. Cook: Can. J. Phys., 1982, vol. 60, pp. 1759–69.

    CAS  Google Scholar 

  24. N.E. Cusack: The Physics of Structurally Disordered Matter, 1st ed., Adam Hilger, Bristol, 1987.

    Google Scholar 

  25. I. Barin: Thermochemical Data of Pure Substances Vol. I, 3rd ed., VCH, Weinheim, Germany, 1995.

    Google Scholar 

  26. I. Barin: Thermochemical Data of Pure Substances Vol. II, 3rd ed., VCH, Weinheim, Germany, 1995.

    Google Scholar 

  27. E.M. Levin, C.R. Robbins, and H.F. McMurdie: Phase Diagram for Ceramists Vol. I, The American Ceramic Society, Westerville, OH, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasue, E., Susa, M., Fukuyama, H. et al. Nonstationary hot wire method with silica-coated probe for measuring thermal conductivities of molten metals. Metall Mater Trans A 30, 1971–1979 (1999). https://doi.org/10.1007/s11661-999-0007-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0007-y

Keywords

Navigation