Skip to main content
Log in

Texture evolution and the role of grain boundaries in skeletal formation during coarsening in solid-liquid mixtures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

During coarsening of high-volume-fraction solid-liquid mixtures, a solid skeleton is formed. Electron back-scattered diffraction (EBSD) analysis of Sn particles in a liquid Pb-Sn eutectic is employed to yield quantitative evidence for the mechanisms that are operative during skeletal formation. We find that the grain boundaries (GBs) play a substantial role in setting the skeletal structure; however, they do not alter the mechanisms for skeletal coarsening. Particles do not rotate into low-energy configurations to minimize the GB energy in the solid-liquid mixture. Thus, there is no particle rotation-induced coalescence. We find that coalescence is not prevalent; Ostwald ripening is the primary mechanism for coarsening in this system. Our data suggest a model for skeletal formation and the origin of the skeletal stability. This model indicates that the primary factor in determining skeletal stability is the number of GB contacts. We recommend two methods to tailor the number of GBs and to engineer the properties of these solid-liquid mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Masuda and R. Watanabe: Sintering Processes, Plenum Press, New York, NY, 1980, pp. 3–22.

    Google Scholar 

  2. A. Niemi and T. Courtney: J. Mater. Sci., 1981, vol. 16, p. 226.

    Article  CAS  Google Scholar 

  3. W. Kaysser, S. Takajo, and G. Petzow: Z. Metallkd., 1982, vol. 73, p. 579.

    CAS  Google Scholar 

  4. R.M. German, A. Bose, and S.S. Mani: Metall. Trans. A, 1992, vol. 23A, pp. 211–19.

    CAS  Google Scholar 

  5. S. Kang and D. Yoon: Metall. Trans. A, 1982, vol. 13A, pp. 1405–11.

    Google Scholar 

  6. S.B. Brown and M.C. Flemings: Adv. Mater. Processes, 1993, vol. 143, p. 36.

    CAS  Google Scholar 

  7. R.M. German: Metall. Trans. A, 1987, vol. 18A, pp. 909–14.

    CAS  Google Scholar 

  8. W.A. Kaysser, S. Takajo, and G. Petzow: Mod. Rev. Powder Metall., 1981, vol. 12, p. 473.

    CAS  Google Scholar 

  9. P.W. Voorhees: Technical Report, Northwestern University, Evanston, IL, 1989.

    Google Scholar 

  10. S.C. Hardy and P.W. Voorhees: Metall. Trans. A, 1988, vol. 19A, pp. 2713–21.

    CAS  Google Scholar 

  11. T.L. Wolfsdorf-Brenner, H. Wong, and P.W. Voorhees: 1997, unpublished research.

  12. Orientation Imaging Microscopy, TexSEM Laboratories, Inc., Provo, UT, 84604.

  13. G. Petzow: Metallographic Etching, ASM, Metals Park, OH, 1978, pp. 79–85.

    Google Scholar 

  14. J.D. Gibbons: Nonparamatric Methods for Quantitative Analysis, American Sciences Press, Inc., Columbus, OH, 1971, pp. 241–72,

    Google Scholar 

  15. J. Sutliff: General Electric Corporate Research and Development, Schenectedy, NY, personal communication, 1996.

  16. P.W. Voorhees, G.B. McFadden, R.F. Boisvert, and D.I. Meiron: Acta Metall., 1988, vol. 36, p. 207.

    Article  CAS  Google Scholar 

  17. P. Haasen: Metall. Trans. A., 1993, vol. 24A, pp. 1001–15.

    CAS  Google Scholar 

  18. T.L. Wolfsdorf, W.H. Bender, and P.W. Voorhees: Acta Mater., vol. 45, 1997, p. 2279.

    Article  CAS  Google Scholar 

  19. H. Grimmer: Scripta Metall., 1979, vol. 13, p. 161.

    Article  Google Scholar 

  20. A. Garbacz and M.W. Grabski: Acta Metall. Mater., 1993, vol. 41, p. 469.

    Article  Google Scholar 

  21. A. Garbacz and M.W. Grabski: Acta Metall. Mater., 1993, vol. 41, p. 475.

    Article  Google Scholar 

  22. I.V. Alexandrov, A.P. Zhilyaev, V.Y. Gertsman, and A.I. Pshenichnyuk: Modelling Simul. Mater. Sci. Eng., 1995, vol. 3, p. 149.

    Article  CAS  Google Scholar 

  23. S.I. Wright and D. Field: Proc.: Microscopy and Microanalysis, G.W. Bailey et al., eds., Springer-Verlag, New York, NY, 1997.

    Google Scholar 

  24. A. Singh and A.H. King: Acta Cryst., 1993, vol. 49, p. 266.

    Google Scholar 

  25. S.S. Kim and D.N. Yoon: Acta Metall., 1983, vol. 31, p. 1151.

    Article  CAS  Google Scholar 

  26. D.N. Yoon and W.J. Huppman: Acta Metall., 1979, vol. 27, p. 973.

    Article  CAS  Google Scholar 

  27. G. Herrmann, H. Gleiter, and G. Baro: Acta Metall., 1976, vol. 24, p. 353.

    Article  Google Scholar 

  28. R. Balluffi: Scripta Metall., 1988, vol. 22, p. 709.

    Article  CAS  Google Scholar 

  29. P.G. Shewmon: Recrystallization, Grain Growth and Textures, ASM, Metals Park, OH, 1966, p. 165.

    Google Scholar 

  30. G. Gessinger, F.V. Lenel, and G.S. Ansell: Scripta Metall., 1968, vol. 2, p. 547.

    Article  Google Scholar 

  31. K.P. Wieters, I.J. Boiko, and W. Schatt: Crystal Res. Technol., 1984, vol. 19, p. 1195.

    Article  CAS  Google Scholar 

  32. S.M. Allameh, S.A. Dregia, and P.G. Shewmon: Acta Metall. Mater., 1993, vol. 41, p. 2887.

    Article  CAS  Google Scholar 

  33. G. Martin: Phys. Status Solidi (b), 1992, vol. 172, p. 121.

    Google Scholar 

  34. M.T. Lyttle and J.A. Wert: Advances in Hot Deformation Textures and Microstructures, TMS, Warrendale, PA, 1993, pp. 373–83.

    Google Scholar 

  35. T.H. Courtney: Scripta Mater., 1996, vol. 35, p. 567.

    Article  CAS  Google Scholar 

  36. S.-W. Chan: Ph.D. Thesis, MIT, Cambridge, MA, 1985.

    Google Scholar 

  37. A. Upadhyaya and R.M. German: Metall. Mater. Trans. A, 1998, vol. 29A, p. 2631.

    CAS  Google Scholar 

  38. A.N. Niemi, L.E. Baxa, J.K. Lee, and T.H. Courtney: Mod. Rev. Powder Metall., 1981, vol. 12, p. 483.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfsdorf-Brenner, T.L., Voorhees, P.W. & Sutliff, J. Texture evolution and the role of grain boundaries in skeletal formation during coarsening in solid-liquid mixtures. Metall Mater Trans A 30, 1955–1969 (1999). https://doi.org/10.1007/s11661-999-0006-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0006-z

Keywords

Navigation