Skip to main content
Log in

Analytical/Finite-element modeling and experimental verification of spray-cooling process in steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An atomizer is a helpful tool that can be used to tailor the cooling rate of steel from the processing temperature in order to get desired properties. It is important to determine the temperature distribution in a specimen subjected to cooling by an atomized spray. A finite-element model for transient heat transfer and thermal-stress analysis is developed to determine the temperature and thermal-stress distribution. The results of the finite-element heat-transfer model are compared with a finite-difference model. The heat-transfer model describes the heat-transfer processes in an AISI 4140 steel cylinder subjected to controlled atomized spray cooling from an initial temperature of 1273 K. The temperature fields predicted by the model are used both to predict the resulting microstructure using continuous cooling transformation (CCT) diagrams and as an input for the thermal-stress model to predict the occurrence of quench cracks. The thermal-stress model incorporates temperature-dependent material properties, heat generation due to phase changes, elastoplastic behavior of steel, and the volumetric expansion associated with the formation of martensite. The results of the finite-element model are verified experimentally by recording temperature profiles, obtaining micrographs, and recording the occurrence of quench cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Jain: J. Met., 1994, vol. 46 (9), p. 16.

    Google Scholar 

  2. B.A. Mueller and P. Monaghan: J. Met., 1994, vol. 46 (9), pp. 17–20.

    Google Scholar 

  3. K. Amano, T. Hatomura, C. Shiga, T. Enami, and T. Tanaka: Proc. Int. Symp. on Accelerated Cooling of Rolled Steel, Winnipeg, Canada, 1987, G.E. Ruddle and E.F. Crawley, eds., Proc. Metallurgical Society of the Canadian Institute of Mining and Metallurgy, Pergamon Press, Elmsford, NY, 1988, vol. 3, pp. 43–56.

    Google Scholar 

  4. R.F. Price and A.J. Fletcher: Met. Technol., 1980, vol. 7 (5), pp. 203–11.

    CAS  Google Scholar 

  5. E.A. Almond, P.S. Mitchell, and R.S. Irani: Met. Technol., 1979, vol. 6 (6), pp. 205–14.

    CAS  Google Scholar 

  6. M.F. Mekkawy, K.A. El-Fawakhry, M.L. Mishreky, and M.M. Eissa: Mater. Sci. Technol., 1990, vol. 6 (1), pp. 28–36.

    Google Scholar 

  7. K.-E. Thelning: J. Heat Treating, 1983, vol. 3 (2), pp. 100–07.

    CAS  Google Scholar 

  8. C.E. Bates: J. Heat Treating, 1988, vol. 6 (1), pp. 27–45.

    CAS  Google Scholar 

  9. T. Ohshiro, Y. Maeda, S. Kuchiishi, T. Ikeda, and H. Sawada: Proc. Int. Symp. on Accelerated Cooling of Rolled Steel, Winnipeg, Canada, 1987, G.E. Ruddle and E.F. Crawley, eds., Proc. Metallurgical Society of the Canadian Institute of Mining and Metallurgy, Pergamon Press, Elmsford, NY, 1988, vol. 3, pp. 283–99.

    Google Scholar 

  10. M. Fegredo: Met. Technol., 1977, vol. 4 (9), pp. 417–24.

    CAS  Google Scholar 

  11. S.R. Pejavar and P.B. Aswath: J. Mater. Eng. Performance, 1994, vol. 3 (2), pp. 234–247.

    CAS  Google Scholar 

  12. A.J. DeArdo, J.M. Gray, L. Meyer, and S.C. Jain: Niobium 81, Proc. Int. Symp. Niobium ’81, San Francisco, 1981, H. Stuart, ed., 1984, The Metallurgical Society of the AIME, Warrendale, PA, p. 685.

    Google Scholar 

  13. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2769–78.

    CAS  Google Scholar 

  14. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, pp. 2779–90.

    CAS  Google Scholar 

  15. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, pp. 2791–2805.

    CAS  Google Scholar 

  16. F.P. Buckingham and A. Haji-Sheikh: ASME HTD-Vol. 259, 1993, pp. 33–41.

    Google Scholar 

  17. F.P. Buckingham and A. Haji-Sheikh: J. Heat Transfer, 1995, vol. 117, pp. 1018–28.

    CAS  Google Scholar 

  18. ABAQUS User’s Manual, HKS Inc., Pawtucket, RI, 1985.

  19. R. Thomas, M. Ganesa-Pillai, P.B. Aswath, and A. Haji-Sheikh: ASME HTD-Vol. 289, 1994, pp. 31–41.

    CAS  Google Scholar 

  20. W.H. Giedt: Trans. ASME, 1949, vol. 71, pp. 375–81.

    Google Scholar 

  21. F.P. Incropera and D.P. DeWitt: Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., New York, NY, 1990, p. A15.

    Google Scholar 

  22. L. Haar, J.S. Gallagher, and G.S. Kell: NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, Hemisphere Publishing Corporation, Washington, DC, 1984, pp. 261–70.

    Google Scholar 

  23. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, Inc., New York, NY, 1960.

    Google Scholar 

  24. High Temperature Property Data: Ferrous Alloys, M.F. Rothman, ed., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 3-10-14.

    Google Scholar 

  25. Atlas of Isothermal and Cooling Transformation Diagrams, ASM, Metals Park, OH, 1977, p. 391.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Ganesa-Pillai, M., Aswath, P.B. et al. Analytical/Finite-element modeling and experimental verification of spray-cooling process in steel. Metall Mater Trans A 29, 1485–1498 (1998). https://doi.org/10.1007/s11661-998-0364-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0364-y

Keywords

Navigation