Skip to main content
Log in

Transformation during the isothermal deformation of low-carbon Nb-B steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The transformation behavior during isothermal deformation of four steels containing different microalloying additions was investigated by means of the “strain-rate change” technique. The flow curves obtained at temperatures ranging from 620 °C to 850 °C, and the associated microstructures, indicate that the transformation in the Mo-Nb-B and Mo-B steels is of the austenite-to-bainite type. Here, dramatic increases in flow stress are observed at lower temperatures. By contrast, the transformation in the Nb-15B and Nb-64B steels is basically of the austenite-to-ferrite type; in these two grades, the flow stress increases observed are attributable to strengthening by NbC precipitation. Large intergranular and intragranular Fe23(C,B)6 particles were found in the Nb-64B steel samples deformed to ɛ=0.1 after holding for 60 seconds at 800°C. These large precipitates are considered to be responsible for accelerating the transformation in the Nb-64B steel by reducing the concentration of boron atoms available for boundary segregation and by acting as nucleation sites for the formation of polygonal ferrite. The flow curves of the Mo-Nb-B steel exhibit distinct serrations, indicating that a displacive mechanism is involved in the γ-to-B transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.B. Pickering: Transformation and Hardenability in Steels, Climax Molybdenum Company Symposium, Ann Arbor, MI, 1967, pp. 109–29.

    Google Scholar 

  2. Y.E. Smith and C.A. Siebert: Metall. Trans., 1971, vol. 2, pp. 1711–25.

    CAS  Google Scholar 

  3. W.W. Cias: Metall. Trans., 1973, vol. 4, pp. 603–14.

    CAS  Google Scholar 

  4. G.F. Melloy, P.R. Slimmon, and P.P. Podgursky: Metall. Trans., 1973, vol. 4, pp. 2279–89.

    CAS  Google Scholar 

  5. S. Dionne, M.R. Krishnadev, L.E. Collins, and J.D. Boyd: Proc. on Accelerated Cooling of Rolled Steel, Proc. TMS-CIM, G.E. Ruddle and A.F. Crawley, eds., CIM, Montreal, Canada, 1987, pp. 71–84.

    Google Scholar 

  6. J.R. Yang, C.Y. Huang, and S.C. Wang: Int. Symp. on Low-Carbon Steels for the 90’s, R. Asfahani and G. Tither, eds., TMS, Warrendale, PA, 1993, pp. 293–301.

    Google Scholar 

  7. M. Babbit, P. Valette, and G. Rigaut: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, A.J. DeArdo, ed., Iron and Steel Society, Warrendale, PA, 1991, pp. 281–88.

    Google Scholar 

  8. H. Tamehiro, M. Murata, and R. Habu: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 120–29.

    Google Scholar 

  9. H. Tamehiro, M. Murata, and R. Habu: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 130–38.

    Google Scholar 

  10. K.A. Taylor and S.S. Hansen: Metall. Trans. A, 1990, vol. 21A, pp. 1697–1708.

    CAS  Google Scholar 

  11. D.Q. Bai, S. Yue, T.M. Maccagno, and J.J. Jonas: Metall. Trans. A, 1998, vol. 29A, pp.

  12. D.Q. Bai, S. Yue, T.M. Maccagno, and J.J. Jonas: ISIJ Int. 1998, vol. 38, pp.

  13. E. Essadiqi and J.J. Jonas: Metall. Trans. A, 1988, vol. 19A, pp. 417–26.

    CAS  Google Scholar 

  14. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    CAS  Google Scholar 

  15. C.J. Yun, K. Nakai, H. Ohtsubo, and Y. Ohmori: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 43–50.

    CAS  Google Scholar 

  16. H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21A, pp. 767–97.

    CAS  Google Scholar 

  17. T.H. Blewitt, R.R. Coltman, and J.K. Redman: J. Appl. Phys., 1957, vol. 28, pp. 651–60.

    Article  CAS  Google Scholar 

  18. H. Suzuki and C.S. Barrett: Acta Metall., 1958, vol. 6, pp. 156–65.

    Article  Google Scholar 

  19. P. Haasen: Phil. Mag., 1958, vol. 3, p. 384.

    CAS  Google Scholar 

  20. T.L. Altshuler and J.W. Christian: Acta Metall., 1966, vol. 14, pp. 903–08.

    Article  CAS  Google Scholar 

  21. Z.S. Bazinski and A. Sleeswijk: Acta Metall., 1957, vol. 5, pp. 176–79.

    Article  Google Scholar 

  22. A.S. Keh, Y. Nakada, and W.C. Leslie: in Dislocation Dynamics, W.A. Owen and M.J. Roberts, eds., McGraw-Hill, New York, NY, 1968, pp. 381–408.

    Google Scholar 

  23. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653–58.

    Google Scholar 

  24. A.H. Cottrell: Phil. Mag., 1953, vol. 44, pp. 829–32.

    CAS  Google Scholar 

  25. B.J. Brindley and P.J. Worthington: Metall. Rev., 1970, vol. 15, pp. 101–14.

    Google Scholar 

  26. J.D. Baird: in The Inhomogeneity of Plastic Deformation, ASM, Metals Park, OH, 1973, pp. 191–222.

    Google Scholar 

  27. P.G. McCormick: Acta Metall., 1973, vol. 21, pp. 873–77.

    Article  CAS  Google Scholar 

  28. A. Karimi Taheri, T.M. Maccagno, and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1532–40.

    Google Scholar 

  29. R.W.K. Honeycombe: Steel, Edward Arnold, London, 1981.

    Google Scholar 

  30. E.O. Hall: Yield Point Phenomena in Metals and Alloys, Plenum Press, New York, NY, 1970.

    Google Scholar 

  31. J.T. Barnby: J. Iron Steel Inst., 1965, vol. 203, pp. 392–97.

    Google Scholar 

  32. R. Sumerling and J. Nutting: J. Iron Steel Inst., 1965, vol. 203, pp. 398–405.

    CAS  Google Scholar 

  33. H.J. Harding and R.W.K. Honeycombe: J. Iron Steel Inst., 1966, vol. 204, pp. 259–67.

    Google Scholar 

  34. S. Kurokawa, J.E. Ruzzante, A.M. Hey, and F. Dyment: Met. Sci., 1983, vol. 17, p. 433.

    CAS  Google Scholar 

  35. H. Oikawa: Technology Reports, Tohoku University, Tohoku, Japan, 1982, vol. 47, p. 67.

    Google Scholar 

  36. P.J. Alberry and C.W. Haworth: Met Sci., 1974, vol. 8, pp. 407–12.

    CAS  Google Scholar 

  37. S. Tsuji and H. Yamanaka: J. Jpn Inst. Met., 1970, vol. 34, p. 486.

    CAS  Google Scholar 

  38. A.H. Cottrell: ASM Seminar on Relation of Properties to Microstructure, ASM, Cleveland, OH, 1953, pp. 131–62.

    Google Scholar 

  39. G. Thomas, D. Schnatz, and W. Gerberich: High-Strength Materials, Proc. 2nd Int. Materials Conf., V.F. Zackay, ed., Wiley New York, NY, 1964, pp. 251–97.

    Google Scholar 

  40. L. Raymond, W. Gerberich, and C.F. Martin: High-Strength Materials, Proc. 2nd Int. Materials Conf., V.F. Zackay, ed., Wiley, New York, NY, 1964, pp. 297–306.

    Google Scholar 

  41. D. Fahr: Metall. Trans., 1971, vol. 2, pp. 1883–92.

    CAS  Google Scholar 

  42. A. Sato, M. Kato, and T. Mori: ICOMAT 1979, Proc. Int. Conf, Massachusetts Institute of Technology, Cambridge, MA, 1979, pp. 331–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, D.Q., Yue, S., Jonas, J.J. et al. Transformation during the isothermal deformation of low-carbon Nb-B steels. Metall Mater Trans A 29, 1383–1394 (1998). https://doi.org/10.1007/s11661-998-0353-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0353-1

Keywords

Navigation