Skip to main content
Log in

Role of cold work and SiC reinforcements on the β′/β precipitation in Al-10 pct Mg alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Elevated temperature (above 100 °C) precipitation behaviors were studied in A1-10 wt pct Mg alloy and the same alloy reinforced with SiC particles through electrical resistivity, hardness, differential scanning calorimetry (DSC), and microscopy. Two distinct hardness peaks/resistivity drops, as associated with two precipitation events, were identified: (1) α (solid solution) → β′ (metastable hex precipitate) → β (Al3Mg2, stable complex cubic precipitate); and (2) αβ. Equilibrium β precipitates, transformed from metastable β′, were observed to possess a wide variet of orientation relationships with the matrix and were often observed to be twinned. A more restricted orientation relationship (only three variants) between β and matrix was observed in direct decomposition of α to β, and β precipitates, within these orientation relationships, were never observed to be twinned. In a predominantly binary Al-Mg system, direct precipitation of β was observed to dominate. However, the presence of trace amounts of boron nitride and/or boron (or a large supply of matrix dislocations) either from cold work, or (as in case of composites) from the thermal mismatch between the SiC and Al matrix, produced both precipitation events with event 1 dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ed., ASM, Metals Park, OH, 1993.

    Google Scholar 

  2. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth, and Co., London, 1976, pp. 312–23.

    Google Scholar 

  3. A. Kelly and R.B. Nicholson: Progr. Mater. Sci., Pergamon Press, London, 1963, vol. 10, pp. 209–11.

    Google Scholar 

  4. S. Samson: Acta Cryst., 1965, vol. 19, p. 401.

    Article  CAS  Google Scholar 

  5. T. Sato and A. Kamio: Mater. Sci. Eng., 1991, vol. A146, pp. 161–80.

    CAS  Google Scholar 

  6. T. Sato, Y. Kojima, and T. Takashi: Metall. Trans. A, 1982, vol. 13A, pp. 1373–78.

    Google Scholar 

  7. K. Osamura and T. Ogura: Metall. Trans. A, 1984, vol. 15A, pp. 835–42.

    CAS  Google Scholar 

  8. M. Van Rooyen, J.A. Sinte Maarensdijk, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2433–43.

    Google Scholar 

  9. S. Nebti, D. Hamana, and G. Cizeron: Acta Metall. Mater., 1995, vol. 43, pp. 3583–88.

    Article  CAS  Google Scholar 

  10. C. Panseri, T. Federighi, and S. Ceresara: Trans. AIME, 1963, vol. 227, pp. 1122–26.

    CAS  Google Scholar 

  11. Y. Kojima, T. Takahashi, M. Kubo, and T. Moringa: Metall. Trans. A, 1981, vol. 12A, pp. 1113–17.

    Google Scholar 

  12. W.A. Pollard: J. Inst. Met., 1964, vol. 93, p. 339.

    Google Scholar 

  13. T. Mukai, K. Higashi, and S. Tanimura: Mater. Sci. Eng., 1994, vol. A176, pp. 181–89.

    Google Scholar 

  14. N.R.M.R. Bhargava, I. Samajdar, S. Ranganathan, and M.K. Surappa: Indian Institute of Science, Bangalore, Ph.D Thesis, 1997.

  15. S. Suresh and K.K. Chawla: in Fundamentals of MMCs, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Boston, MA, 1993, pp. 119–36.

    Google Scholar 

  16. C. Badini, F. Marino, and E. Verne: Mater Sci. Eng., 1995, vol. A191, pp. 185–91.

    CAS  Google Scholar 

  17. H. Lee, W. Lu, and S.L. Chan: Scripta Metall. Mater., 1992, vol. 26, pp. 1723–26.

    Article  CAS  Google Scholar 

  18. M.J. Starink and P. Van Mourik: Metall. Trans. A, 1991, vol. 22A, pp. 665–74.

    CAS  Google Scholar 

  19. I. Dutta, C.P. Harper, and G. Dutta: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1591–1602.

    CAS  Google Scholar 

  20. B. Dutta and M.K. Surappa: Scripta Metall. Mater., 1995, vol. 32, p. 731.

    Article  CAS  Google Scholar 

  21. J.W. Martin and R.D. Doherty: Stability of Microstructures in Metallic Systems, Cambridge University Press, London, 1976.

    Google Scholar 

  22. D.A. Porter and K.E. Easterling: Phase Transformations in Metals And alloys, T.J. Press Ltd., Cornwell, United Kingdom, 1989.

    Google Scholar 

  23. H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., 1990, vol. 38, pp. 1789–1802.

    Article  CAS  Google Scholar 

  24. G.C. Weatherly and R.B. Nicohlson: Phil. Mag., 1968, vol. 16, pp. 801–31.

    Google Scholar 

  25. M.F. Komarov et al.: Fiz. Met. Metalloved., 1966, vol. 21 (6), pp. 858–67.

    Google Scholar 

  26. L.I. Kaygorodova, N.N. Buynov, and M.F. Komarova: Fiz. Met. Metalloved., 1982, vol. 54 (3), pp. 542–47.

    Google Scholar 

  27. N.N. Buynov and L.I. Kaygorodova: Fiz. Met. Metalloved., 1985, vol. 59 (1), pp. 91–95.

    Google Scholar 

  28. J.W. Cahn and G. Kalonji: Solid State Phase Transformation, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds. AIME, Warrendale, PA, 1981, pp. 3–14.

    Google Scholar 

  29. N. Kuwano et al.: ICOMAT-86, Japan Institute of Metals, Sendai, 1987, pp. 355–58.

    Google Scholar 

  30. H.C. Montgomery: J. Appl. Phys., 1971, vol. 42, p. 2971.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, N.R.M.R., Samajdar, I., Ranganathan, S. et al. Role of cold work and SiC reinforcements on the β′/β precipitation in Al-10 pct Mg alloy. Metall Mater Trans A 29, 2835–2842 (1998). https://doi.org/10.1007/s11661-998-0324-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0324-6

Keywords

Navigation