Skip to main content
Log in

Continuous cooling transformation temperatures determined by compression tests in low carbon bainitic grades

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The transformation behaviors of six steels containing microalloying additions of B, Nb, and Mo were investigated under continuous cooling conditions. Continuous cooling compression (CCC) tests were employed to study the effects of chemical composition (mainly, Nb, Mo, and B) and deformation parameters (reheat temperature, prestrain, and holding time) on the transformation temperatures (A r3 and B s). It was found that for the Mo-Nb-B, Mo-B, and B steels, the transformation temperatures are relatively stable, and vary in a range of about 20 °C when the reheat temperature is changed from 900 °C to 1200 °C. Both the stress-temperature curves and the associated microstructures show that transformation in the Mo-Nb-B steel is basically of the γ-to-B type; i.e., the resulting microstructure is low carbon bainite. By contrast, for the Nb-B steels, the transformation temperatures vary significantly when the reheat temperature is changed. The concentration of boron in solution strongly affects the transformation behavior of this type of steel. In the Nb-48B steel, the latter is of the γ-to-B type, while in grades with either higher (Nb-64B) or lower (Nb-15B) boron concentrations, it is mainly of the γ-to-α type. Large Fe23(C,B)6 particles, which were found at low reheat temperatures and long holding times, are considered to be responsible for raising the transformation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yamanaka and Y. Ohmori: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, p. 92.

    Google Scholar 

  2. Boron in Steel, S.K. Banerji and J.E. Morral, eds., AIME, Warrendale, PA, 1979.

    Google Scholar 

  3. R.A. Grange and J.B. Michell: Trans. ASM, 1961, vol. 53, pp. 157–85.

    CAS  Google Scholar 

  4. B.M. Kapadia, R.M. Brown, and W.J. Murphy: Trans. TMS-AIME, 1968, vol. 242, pp. 1689–94.

    CAS  Google Scholar 

  5. M. Ueno and T. Inoue: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 210–17.

    CAS  Google Scholar 

  6. G.F. Melloy, P.R. Slimmon, and P.P. Podgursky: Metall. Trans., 1973, vol. 4, pp. 2279–89.

    CAS  Google Scholar 

  7. P. Maitrepierre, D. Thivellier, and R. Tricot: Metall. Trans. A, 1975, vol. 6A, pp. 287–301.

    CAS  Google Scholar 

  8. R. Habu, M. Miyata, S. Sekino, and S. Goda: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 404.

    Google Scholar 

  9. S. Dionne, M.R. Krishnadev, L.E. Collins, and J.D. Boyd: in Accelerated Cooling of Rolled Steel, G.E. Ruddle and A.F. Crawley, eds., TMS-CIM, 1987, pp. 71–84.

  10. M. Babbit, P. Valette, and G. Rigaut: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, A.J. DeArdo, ed., ISS-AIME, Warrendale, PA, 1991, pp. 281–88.

    Google Scholar 

  11. L.M. Mavropoulos and J.J. Jonas: Can. Metall. Q., 1989, vol. 28, pp. 159–69.

    CAS  Google Scholar 

  12. M. Djahazi, X.L. He, J.J. Jonas, and W.P. Sun: Metall. Trans. A, 1992, vol. 23A, pp. 2111–20.

    CAS  Google Scholar 

  13. D.Q. Bai, S. Yue, T. Maccagno, and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1084–93.

    CAS  Google Scholar 

  14. H. Tamehiro, M. Murata, and R. Habu: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 120–29.

    Google Scholar 

  15. H. Tamehiro, M. Murata, and R. Habu: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 130–38.

    Google Scholar 

  16. A. Zarei Hanzaki, R. Pandi, P.D. Hodgson, and S. Yue: Metall. Trans. A, 1993, vol. 24A, pp. 2657–65.

    Google Scholar 

  17. D.Q. Bai, S. Yue, T. Maccagno, and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1998, vol. 38 (to be issued in April, 1998).

  18. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    CAS  Google Scholar 

  19. L.J. Habraken and M. Economopoulos: Transformations and Hardenability in Steels, Climax Molybdenum Company Symp., Ann Arbor, MI, 1967, pp. 69–106.

  20. F.B. Pickering: Transformation and Hardenability in Steels, Climax Molybdenum Company Symposium, Ann Arbor, MI, 1967, pp. 109–29.

  21. H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori: Metall. Trans. A, 1990, vol. 21A, pp. 877–88.

    CAS  Google Scholar 

  22. C.J. Yun, K. Nakai, H. Ohtsubo, and Y. Ohmori: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 43–50.

    CAS  Google Scholar 

  23. R. Moses, A. Zarei Hanzaki, S. Yue, and J.J. Jonas: 35th Mechanical Working and Steel Processing Conf., ISS-AIME, Warrendale, PA, 1994, pp. 435–42.

    Google Scholar 

  24. J.M. Gray, D. Webster, and J.H. Woodhead: J. Iron Steel Inst., 1965, vol. 203, pp. 812–18.

    CAS  Google Scholar 

  25. W.B. Morrison and J.H. Woodhead: J. Iron Steel Inst., 1963, vol. 201, pp. 43–46.

    CAS  Google Scholar 

  26. J. Irvine and T.N. Baker: Met. Sci., 1979, pp. 228–37.

  27. S.V. Subramanian, M. Prikryl, B.D. Gaulin, D.D. Clifford, S. Benincasa, and I. O’Reilly: Iron Steel Inst. Jpn. Int., Special Issue on Physical Metallurgy of Ultralow Carbon Interstitial Free Steels, 1994, vol. 34, pp. 61–69.

    CAS  Google Scholar 

  28. W.P. Sun, P.R. Cetlin, S. Yue, and J.J. Jonas: Proc. 34th Mechanical Working and Steel Processing Conf., ISS-AIME, Warrendale, PA, 1993, vol. 30, pp. 61–71.

    Google Scholar 

  29. N. Yoshinaga, K. Ushioda, S. Akamatsu, and O. Akisue: Iron Steel Inst. Jpn., Int., Special Issue on Physical Metallurgy of Ultralow Carbon Interstitial Free Steels, 1994, vol. 34, pp. 24–32.

    CAS  Google Scholar 

  30. D.Q. Bai, S. Yue, T. Maccagno, and J.J. Jonas: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 0000–00.

    Google Scholar 

  31. K.A. Taylor and S.S. Hansen: Metall. Trans. A, 1990, vol. 21A, pp. 1697–1708.

    CAS  Google Scholar 

  32. S. Kurokawa, J.E. Ruzzante, A.M. Hey, and F. Dyment: Met. Sci., 1983, vol. 17, pp. 433–38.

    CAS  Google Scholar 

  33. R.P. Agarawala, M.C. Naik, M.S. Anand, and A.R. Paul. J. Nucl. Mater., 1970, vol. 36, p. 41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, D.Q., Yue, S., Jonas, J.J. et al. Continuous cooling transformation temperatures determined by compression tests in low carbon bainitic grades. Metall Mater Trans A 29, 989–1001 (1998). https://doi.org/10.1007/s11661-998-0291-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0291-y

Keywords

Navigation