Skip to main content
Log in

A free dendritic growth model accommodating curved phase boundaries and high peclet number conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A steady-state free dendrite growth model accommodating nonlocal equilibrium tip conditions and curved liquidus and solidus has been developed. The developed model assumes a dendrite tip of a paraboloid of revolution and is applicable to dendrite growth in dilute binary alloys for all values of P c , and reduces to the BCT model for linear liquidus and solidus. The marginal stability criterion of Trivedi and Kurz is shown to apply even in the presence of kinetic undercooling and curved phase boundaries when used with an appropriate concentration-dependent liquidus slope. The model is applied to Sn-Pb alloys to predict the tip velocity, tip radius, solute trapping, and four components of undercooling in the quasi-solutal, solutal-to-thermal transition and quasi-thermal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Ivantsov: Dokl. Akad. Nauk SSSR, 1947, vol. 58, pp. 567–69.

    Google Scholar 

  2. G. Horvay and J.W. Cahn: Acta Metall., 1961, vol. 9, pp. 695–705.

    Article  CAS  Google Scholar 

  3. G.F. Bolling and W.A. Tiller: J. Appl. Phys., 1961, vol. 32, pp. 2587–2605.

    Article  CAS  Google Scholar 

  4. G.E. Nash and M.E. Glicksman: Acta Metall., 1974, vol. 22, pp. 1283–90.

    Article  CAS  Google Scholar 

  5. D.E. Temkin: Sov. Phys.—Crystallogr., 1962, vol. 7, pp. 354–57.

    Google Scholar 

  6. R. Trivedi and W.A. Tiller: Acta Metall., 1978, vol. 26, pp. 679–87.

    Article  CAS  Google Scholar 

  7. A. Karma and J.S. Langer: Phys. Rev., 1984, vol. A30, pp. 3147–55.

    Google Scholar 

  8. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  CAS  Google Scholar 

  9. J. Lipton, M.E. Glicksman, and W. Kurz: Metall. Trans. A, 1987, vol. 18A, pp. 341–45.

    CAS  Google Scholar 

  10. J. Lipton, W. Kurz, and R. Trivedi: Acta Metall., 1987, vol. 35 (4), pp. 957–64.

    Article  CAS  Google Scholar 

  11. R. Trivedi, J. Lipton, and W. Kurz: Acta Metall., 1987, vol. 35 (4), pp. 965–70.

    Article  CAS  Google Scholar 

  12. W.J. Boettinger, S.R. Coriell, and R. Trivedi: in Rapid Solidification Processing: Principles and Technology IV, R. Mehrabian and P.A. Parrish, eds., Claitor’s Publishing Division, Baton Rouge, LA 1988, pp. 13–25.

    Google Scholar 

  13. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Article  Google Scholar 

  14. R. Trivedi and W. Kurz: Acta Metall., 1986, vol. 34 (8), pp. 1663–70.

    Article  CAS  Google Scholar 

  15. J.S. Langer and H. Muller-Krümbhaar: J. Cryst. Growth, 1977, vol. 42, pp. 11–14.

    Article  CAS  Google Scholar 

  16. J.S. Langer and H. Muller-Krümbhaar: Acta Metall., 1978, vol. 26, pp. 1681–87, pp. 1689–95, and pp. 1697–1708.

    Article  CAS  Google Scholar 

  17. M.J. Aziz: J. Appl. Phys., 1982, vol. 53 (2), pp. 1158–68.

    Article  CAS  Google Scholar 

  18. M.J. Aziz: Appl. Phys. Lett., 1983, vol. 43 (5), pp. 552–54.

    Article  CAS  Google Scholar 

  19. K.A. Jackson, G.H. Gilmer, and H.J. Leamy: in Laser and Electron Beam Processing of Materials, C.W. White and P.S. Peercy, eds., Academic Press, New York, NY, 1980, pp. 104–10.

    Google Scholar 

  20. J.C. Baker and J.W. Cahn: in Solidification, ASM, Metals Park, OH, 1971, pp. 23–58.

    Google Scholar 

  21. F. Spaepen and D. Turnbull: Proc. 2nd Int. Conf. on Rapidly Quenched Metals, N.J. Grant and B.C. Giessen, eds., Massachusetts Institute of Technology Press, Cambridge, MA, 1976, pp. 205–29.

    Google Scholar 

  22. D. Turnbull and B.G. Bagley: Treatise on Solid State Chemistry, Plenum Press, New York, NY, 1975, vol. n5, pp. 513–54.

    Google Scholar 

  23. J.L. Murray: Metall. Trans. A, 1984, vol. 15A, pp. 261–68.

    CAS  Google Scholar 

  24. W.J. Boettinger and S.P. Coriell: Mater. Sci. Eng., 1984, vol. 65, pp. 27–36.

    Article  CAS  Google Scholar 

  25. M. Suzuki, T.J. Piccone, M.C. Flemings, and H.D. Brody: Metall. Trans. A, 1991, vol. 22A, pp. 2761–68.

    CAS  Google Scholar 

  26. W. Löser and D.M. Herlach: Metall. Trans. A, 1992, vol. 23A, pp. 1585–91.

    Google Scholar 

  27. S.-D. Kim, S.-H. Shin, T. Suzuki, and T. Umeda: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2815–26.

    CAS  Google Scholar 

  28. S.-C. Huang and M.E. Glicksman: Acta Metall., 1981, vol. 29, pp. 701–15.

    Article  CAS  Google Scholar 

  29. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, p. 15.

    Google Scholar 

  30. S.R. Coriell and R.F. Sekerka: J. Cryst. Growth, 1983, vol. 61, pp. 499–508.

    Article  CAS  Google Scholar 

  31. H.J. Fecht, M.-X. Zhang, Y.A. Chang, and J.H. Perpezko: Metall. Trans. A, 1989, vol. 20A, pp. 795–803.

    CAS  Google Scholar 

  32. M.G. Chu, Y. Shiohara, and M.C. Flemings: Metall. Trans. A, 1984, vol. 15A, pp. 1303–10.

    CAS  Google Scholar 

  33. K.P. Cooper, I.E. Anderson, and J.H. Pepepezko: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai, 1981, T. Masumoto and K. Suzuki, eds., The Japanese Institute of Metals, Sendai, Japan, 1982, pp. 107–10.

    Google Scholar 

  34. R. Willnecker, D.M. Herlach, and B. Feuerbacher: Appl. Phys. Lett., 1990, vol. 56, pp. 324–26.

    Article  CAS  Google Scholar 

  35. E. Scheip, R. Willnecker, D.M. Herlach, and G.P. Görler: Mater. Sci. Eng., 1988, vol. 98, pp. 39–42.

    Article  Google Scholar 

  36. D.R. Poirier and P. Nandapurkur: Metall. Trans. A, 1988, vol. 19A, pp. 3057–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiVenuti, A.G., Ando, T. A free dendritic growth model accommodating curved phase boundaries and high peclet number conditions. Metall Mater Trans A 29, 3047–3056 (1998). https://doi.org/10.1007/s11661-998-0212-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0212-0

Keywords

Navigation