Skip to main content
Log in

Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The isothermal and thermomechanical fatigue (TMF) behavior of the titanium alloy IMI 834 was studied between 350 °C and 650 °C in air and vacuum, respectively. Transmission electron microscopy (TEM) observations revealed that the microstructure established in the TMF tests was governed by the maximum temperature within the cycle. However, if the maximum temperature does not exceed 600 °C, planar dislocation slip prevails and similar microstructures are formed regardless of the test temperature and the testing mode (TMF and isothermal, respectively). As a result, the stress-strain response in TMF tests can be assessed from the corresponding isothermal data. Wavy dislocation slip was found to determine the stress-strain behavior if the maximum test temperature exceeded 600 °C. Moreover, in TMF tests with a maximum test temperature of 650 °C, the dislocation arrangement formed in the high-temperature part of the hysteresis loop was found to be stable throughout the cycle and to affect significantly the stress-strain response at the low temperatures. Although in-phase (IP) and out-of-phase (OP) TMF tests led to an almost identical microstructure, OP loading was always found to be most detrimental. The interaction between the embrittled subsurface layer, caused by oxygen uptake, and the high tensile stresses developing in the low-temperature part of the hysteresis loop in OP tests eases crack initiation and initial crack propagation and results in reduced fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Boyer: Mater. Sci. Eng., 1996, vol. A213, pp. 103–14.

    CAS  Google Scholar 

  2. P.A. Blenkinsop: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1–10.

    Google Scholar 

  3. D.F. Neal: in Titanium Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk, eds., DGM, Oberursel, Germany, 1985, vol. 4, 2419–24.

    Google Scholar 

  4. D.F. Neal: in 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Béranger, eds., Les Edition de Physique, Les Ulis, Cedex, France, 1988, vol. 1, pp. 253–58.

    Google Scholar 

  5. D.F. Neal and S.P. Fox: in Titanium ’92 Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, 1993, vol. 1, pp. 287–94.

    Google Scholar 

  6. C. Ramachandra, A.K. Singh, and G.M.K. Sarma: Metall. Trans. A, 1993, vol. 24A, pp. 1273–80.

    CAS  Google Scholar 

  7. A.K. Singh and C. Ramachandra: J. Mater. Sci., 1997, vol. 32, pp. 229–34.

    Article  CAS  Google Scholar 

  8. H. Renner, H. Kestler, and H. Mughrabi: in Fatigue ’96, G. Lütjering and H. Nowack, eds., Elsevier Applied Science, London, 1996, vol. II, pp. 935–40.

    Google Scholar 

  9. C. Andres, A. Gysler, and G. Lütjering: in Titanium ’92 Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, vol. 1, 1993, pp. 311–18.

    Google Scholar 

  10. A.L. Dowson, A.C. Hollis, and C.-J. Beevers: Int. J. Fatigue, 1992, vol. 14, pp. 261–70.

    Article  CAS  Google Scholar 

  11. C. Andres, A. Gysler, and G. Lütjering: Z. Metallkd., 1997, vol. 88, pp. 197–203.

    CAS  Google Scholar 

  12. H. Kestler, H. Mughrabi, and H. Renner: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1171–78.

    Google Scholar 

  13. F. Torster, A. Gysler, and G. Lütjering: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1395–1402.

    Google Scholar 

  14. P. Ghosal, R. Prasad, and C. Ramachandra: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2751–54.

    CAS  Google Scholar 

  15. T. Kordisch and H. Nowack: in Fatigue ’96, G. Lütjering and H. Nowack, eds., Elsevier Applied Science, London, 1996, vol. II, pp. 777–82.

    Google Scholar 

  16. D.A. Miller and R.H. Priest: in High Temperature Fatigue, Properties and Prediction, R.P. Skelton, ed., Elsevier Applied Science, London, 1987, pp. 113–75.

    Google Scholar 

  17. E.G. Ellison and A. Al-Zamily: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 39–51.

    Article  CAS  Google Scholar 

  18. E.G. Ellison and A. Al-Zamily: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 53–67.

    Article  Google Scholar 

  19. R. Zauter, F. Petry, H.-J. Christ, and H. Mughrabi: in Thermomechanical Fatigue Behavior of Materials, ASTM-STP 1186, H. Sehitoglu, ed., ASTM, Philadelphia, PA, 1993, pp. 70–90.

    Google Scholar 

  20. K. Kuwabara, A. Nitta, and T. Kitamura: in Advances in Life Prediction, D.A. Woodford and J.R. Whitehead, eds., ASME, Albany, NY, 1983, pp. 131–41.

    Google Scholar 

  21. R.W. Neu and H. Sehitoglu: Metall. Trans. A, 1989, vol. 20A, pp. 1755–67.

    CAS  Google Scholar 

  22. H. Chen, W. Chen, D. Mukherji, R.P. Wahi, and H. Wever: Z. Metallkd., 1995, vol. 86, pp. 423–27.

    CAS  Google Scholar 

  23. S. Esmaeili, C.C. Engler-Pinto, Jr., B. Ilschner, and F. Rézai-Aria: Scripta Metall. Mater., 1995, vol. 32, pp. 1777–81.

    Article  CAS  Google Scholar 

  24. H. Frenz, J. Meersmann, J. Ziebs, H.-J. Kühn, R. Sievert, and J. Olschewski: Mater. Sci. Eng., 1997, vol. A230, pp. 49–57.

    CAS  Google Scholar 

  25. T. Beck, G. Pitz, K.-H. Lang, and D. Löhe: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 719–22.

    Google Scholar 

  26. T.P. Gabb, J. Gayda, P.A. Bartolotta, and M.G. Castelli: Int. J. Fatigue, 1993, vol. 15, pp. 413–22.

    Article  CAS  Google Scholar 

  27. H.J. Maier and H.-J. Christ: Int. J. Fatigue, 1997, vol. 19, pp. S267-S274.

    Article  CAS  Google Scholar 

  28. H.-J. Christ, H. Mughrabi, S. Kraft, F. Petry, R. Zauter, and K. Eckert: in Fatigue under Thermal and Mechanical Loading—Mechanisms, Mechanics and Modelling, J. Bresser and L. Rémy, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, pp. 1–14.

    Google Scholar 

  29. C. Sommer, H.-J. Christ, and H. Mughrabi: Acta Metall. Mater., 1991, vol. 39, pp. 1177–87.

    Article  CAS  Google Scholar 

  30. A. Gysler and S. Weissmann: Mater. Sci. Eng., 1977, vol. 27, pp. 181–93.

    Article  CAS  Google Scholar 

  31. G. Lütjering and S. Weissmann: Acta Metall., 1970, vol. 18, pp. 785–95.

    Article  Google Scholar 

  32. A.P. Woodfield, P.J. Postans, M.H. Loretto, and R.E. Smallman: Acta Metall., 1988, vol. 36, pp. 507–15.

    Article  CAS  Google Scholar 

  33. D.F. Neal: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 2195–2204.

    Google Scholar 

  34. P.J. Bania: in Titanium Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk, eds., DGM, Oberursel, Germany, 1985, vol. 4, pp. 2305–12.

    Google Scholar 

  35. W.T. Donlon, J.E. Allison, and J.V. Lasecki: Titanium ’92 Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, 1993, vol. 1, pp. 295–302.

    Google Scholar 

  36. M.T. Cope and M.J. Hill: in 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Béranger, eds., Les Edition de Physique, Les Ulis Cedex, France, 1988, vol. 1, pp. 153–58.

    Google Scholar 

  37. R. Zauter, H.-J. Christ, and H. Mughrabi: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 407–13.

    CAS  Google Scholar 

  38. J. Petit: Laboratoire de Mécanique et Physique des Matériaux, Futuroscope, Poitiers, France, unpublished research, 1997.

    Google Scholar 

  39. B. Borchert and M.A. Daeubler: in 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Béranger, eds., Les Edition de Physique, Les Ulis, Cedex, France, 1988, vol. 1, pp. 467–72.

    Google Scholar 

  40. C. Leyens, M. Peters, and W.A. Kaysser: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1935–42.

    Google Scholar 

  41. Z. Liu and G. Welsch: Metall. Trans. A, 1988, vol. 19A, pp. 527–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pototzky, P., Maier, H.J. & Christ, H.J. Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834. Metall Mater Trans A 29, 2995–3004 (1998). https://doi.org/10.1007/s11661-998-0207-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0207-x

Keywords

Navigation