Skip to main content
Log in

Liquidlike sintering behavior of nanometric Fe and Cu powders: Experimental approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanometric Fe and Cu powders were sintered in vacuum, He, and H2 atmospheres after uniaxial cold pressing. The shrinkage behavior of samples was studied using three different dilatometric techniques: constant heating rate, isothermal annealing, and the Dorn method. Density greater than 90 pct was obtained at sintering temperatures of 900 °C. In nanometric powders, densification and grain coarsening occurred in a narrow temperature interval. Despite the low oxide content in the starting powders (1.5 to 4 wt pct), the reducing atmosphere plays a relevant role in the sintering process. The self-diffusion activation energies obtained for nanometric Fe were 116 and 60 kJ/mole in vacuum and H2, and those obtained for nanometric Cu were 70 and 43 kJ/mole in He and H2. According to the present results, the activation energies obtained from both nanometric powders in H2 could be associated with those for self-diffusion in liquid Fe (65 kJ/mole) and Cu (41 kJ/mole).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanomaterials: Synthesis, Properties and Applications, A.S. Edelstein and R.C. Cammarata, eds., IOP Publishers/Institute of Physics, Bristol, United Kingdom, 1996, pp. 303–436.

    Google Scholar 

  2. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  3. Y. Sakka, T. Uchikoshi, and E. Ozawa: J. Mater. Sci., 1993, vol. 28, pp. 203–17.

    Article  CAS  Google Scholar 

  4. D.L. Bourell and W.A. Kaysser: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 677–85.

    CAS  Google Scholar 

  5. Y.H. Zhou, M. Harmelin, and J. Bigot: Scripta Metall., 1989, vol. 23, pp. 1391–96.

    Article  CAS  Google Scholar 

  6. O. Dominguez and J. Bigot: Nanostructr. Mater., 1995, vol. 6, pp. 877–80.

    Article  Google Scholar 

  7. J. Bigot: Ann. Chim. Fr., 1993, vol. 18, pp. 369–75.

    CAS  Google Scholar 

  8. O. Dominguez, J. Phillipot, and J. Bigot: Scripta Metall., 1995, vol. 32, pp. 13–17.

    Article  CAS  Google Scholar 

  9. O. Dominguez, Y. Champion, and J. Bigot: in Synthesis and Processing of Nanocrystalline Powders, D.L. Bourell, ed., TMS, Warrendale, PA, 1996, pp. 193–99.

    Google Scholar 

  10. Y. Champion and J. Bigot: Scripta Metall. Mater., 1996, vol. 35, pp. 517–22.

    CAS  Google Scholar 

  11. A. Guinier: X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, Dover Publications, New York, NY, 1963, pp. 121–49.

    Google Scholar 

  12. I.B. Cutler: J. Am. Ceram. Soc., 1969, vol. 52, pp. 14–17.

    Article  CAS  Google Scholar 

  13. W.S. Young and I.B. Cutler: J. Am. Ceram. Soc., 1970, vol. 53, pp. 659–63.

    Article  CAS  Google Scholar 

  14. H. Ichinose and G.C. Kuczynski: Acta Metall., 1962, vol. 10, pp. 209–13.

    Article  CAS  Google Scholar 

  15. D.L. Johnson and I.B. Cutler: J. Am. Ceram. Soc., 1963, vol. 46, pp. 541–50.

    Article  CAS  Google Scholar 

  16. J. Bacmann and G. Cizeron: J. Am. Ceram. Soc., 1968, vol. 51, pp. 209–12.

    Article  CAS  Google Scholar 

  17. R.S. Averback: Z. Phys. D, 1993, vol. 26, pp. 84–88.

    Article  CAS  Google Scholar 

  18. R.A. Andrievski: Int. J. Powder Metall., 1994, vol. 30, pp. 59–66.

    CAS  Google Scholar 

  19. Y. Sakka: J. Mater. Sci. Lett., 1991, vol. 10, pp. 987–91.

    Article  CAS  Google Scholar 

  20. R. Birringer, H. Gleiter, H.P. Klein, and P. Marquardt: Phys. Lett., 1984, vol. 102A, pp. 365–372.

    CAS  Google Scholar 

  21. R.M. German and Z. Munir: J. Less-Common Met., 1976, vol. 46, pp. 333–38.

    Article  CAS  Google Scholar 

  22. G. Petzow and H.E. Exner: Z. Metallkd., 1976, vol. 67, pp. 611–18.

    CAS  Google Scholar 

  23. J.G. Early, F.V. Lenel, and G.S. Ansell: Trans. TMS-AIME, 1964, vol. 230, pp. 1641–50.

    Google Scholar 

  24. R.M. German: Sintering Theory and Practice, John Wiley & Sons, New York, NY, 1996, pp. 78–94.

    Google Scholar 

  25. F.B. Swinkels and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 259–81.

    Article  CAS  Google Scholar 

  26. J. Philibert: Diffusion et Transport de Matière dans les Solides, Les Editions de Physique, Paris, 1990, pp. 391–406.

    Google Scholar 

  27. J. Horváth: Def. Diffus. Forum, 1989, vols. 66–69, pp. 207–28.

    Google Scholar 

  28. H. Gleiter: Phys. Status Solidi, 1992, vol. 172B, pp. 41–47.

    Google Scholar 

  29. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press, New York, NY, 1974, vol. 1, pp. 6–14.

    Google Scholar 

  30. T.R. Malow and C.C. Koch: in Synthesis and Processing of Nanocrystalline Powders, D.L. Bourell, ed, TMS, Warrendale, PA, 1996, pp. 33–44.

    Google Scholar 

  31. J. Horváth, R. Birringer, and H. Gleiter: Solid State Commun., 1987, vol. 62, pp. 319–22.

    Article  Google Scholar 

  32. W. Dickenscheid, R. Birringer, H. Gleiter, D. Kanert, B. Michel, and B. Günther: Solid State Commun., 1991, vol. 79, pp. 683–86.

    Article  CAS  Google Scholar 

  33. S.K. Ganapathi, D.M. Owen, and A.H. Chokshi: Scripta Metall., 1991, vol. 25, pp. 2699–2704.

    Article  Google Scholar 

  34. A. Valiev: in Nanophase Materials, G.C. Hadjipanayis and R.W. Siegel, eds., Kluwer Academic Publishers, Hingham, MA, 1994, pp. 275–82.

    Google Scholar 

  35. O. Dominguez: Ph.D. Thesis, Université d’Orsay, Orsay, 1996.

    Google Scholar 

  36. R.W.K. Honeycombe: The Plastic Deformation of Metals, 2nd ed., Edward Arnold Publishers, London, 1984.

    Google Scholar 

  37. H.Y. Zhang, K. Lu, and Z.Q. Hu: Nanostr. Mater., 1995, vol. 6, pp. 489–93.

    Article  CAS  Google Scholar 

  38. C.J. Coombes: J. Phys. F., 1972, vol. 2, pp. 441–49.

    Article  CAS  Google Scholar 

  39. H. Zhu and R.S. Averback: Mater. Sci. Eng., 1995, vol. 204A, pp. 96–100.

    Google Scholar 

  40. A.L. Greer: Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures, M. Nastasi, D.M. Parkin, and H. Gleiter, eds., Kluwer Academic Publishers, 1993, pp. 53–77.

  41. L. Pietronero and E. Tosatti: Solid State Commun., 1979, vol. 32, pp. 255–59.

    Article  CAS  Google Scholar 

  42. M.I. Alymov, E.I. Maltina, and Y.N. Stepanov: Nanostr. Mater., 1994, vol. 4, pp. 737–42.

    Article  CAS  Google Scholar 

  43. D.L. Olynick, J.M. Gibson, and R.S. Averback: Mater. Sci. Eng., 1995, vol. 204A, pp. 54–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, O., Champion, Y. & Bigot, J. Liquidlike sintering behavior of nanometric Fe and Cu powders: Experimental approach. Metall Mater Trans A 29, 2941–2949 (1998). https://doi.org/10.1007/s11661-998-0201-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0201-3

Keywords

Navigation