Skip to main content
Log in

The effect of geometrical assumptions in modeling solid-state transformation kinetics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the quest for the ideal transformation model describing the austenite decomposition in steel, emphasis shifts from empirical to physical models. This has resulted in the widely used description of the transformation by means of the interface velocity between the parent phase and the newly formed phase, a description which yields reliable predictions of the transformation behavior only when combined with a realistic austenite geometry. This article deals with a single-grain austenite geometry model applied to transformations in which the interface velocity is constant throughout the transformation, e.g., certain types of massive transformations. The selected geometry is a regular tetrakaidecahedron, combining topological features of a random Voronoi distribution with the advantages of single-grain calculations. The simulations show the influence of the ferrite-nucleus density, the relative positions of the ferrite nuclei inside the austenite grain, and the grain-size distribution. From simulations with a constant interface velocity, the transformation behavior for a tetrakaidecahedron is in agreement with transformation kinetics in terms of the Johnson-Mehl-Avrami (JMA) model. Using the tetrakaidecahedron geometry, one can simulate transformation curves that can be experimentally obtained by calorimetry or dilatometry, in order to study the quantities affecting the transformation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Heckel and H.W. Paxton: Trans. TMS-AIME, 1960, vol. 218, pp. 799–806.

    CAS  Google Scholar 

  2. R.A. Vandermeer: Acta Metall. Mater., 1990, vol. 38, pp. 2461–70.

    Article  CAS  Google Scholar 

  3. T. Gladman: The Physical Metallurgy of Microalloyed Steels, 1st. ed., Institute of Materials, London, 1997, pp. 144–48.

    Google Scholar 

  4. J.W. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416–58.

    Google Scholar 

  5. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  6. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  7. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  8. W. Huang and M. Hillert: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 480–83.

    CAS  Google Scholar 

  9. C. Zurek, E. Sachova, and H.P. Hougardy: Abschlussbericht Project COSMOS, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, 1993.

    Google Scholar 

  10. A. Thorvaldsen: Acta Mater., 1997, vol. 45, pp. 587–94.

    Article  CAS  Google Scholar 

  11. M. Militzer, R. Pandi, and E.B. Hawbolt: Metall. Mater. Trans. A, 1996, vol 27A, pp. 1544–1553.

    Google Scholar 

  12. G.P. Krielaart, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng. A, 1997, vol. 237A, pp. 216–23.

    Google Scholar 

  13. G.P. Krielaart and S. van der Zwaag: Mater. Sci. Eng. A, 1998, vol. 246A, pp. 104–16.

    Google Scholar 

  14. R.C. Reed and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1992, vol. 8, pp. 421–35.

    CAS  Google Scholar 

  15. V.M.M. Silalahi, M. Onink, and S. van der Zwaag: Steel Res., 1995, vol. 66, pp. 482–89.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Leeuwen, Y., Vooijs, S., Sietsma, J. et al. The effect of geometrical assumptions in modeling solid-state transformation kinetics. Metall Mater Trans A 29, 2925–2931 (1998). https://doi.org/10.1007/s11661-998-0199-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0199-6

Keywords

Navigation