Skip to main content
Log in

An analytical solution of the critical interface velocity for the encapturing of insoluble particles by a moving solid/liquid interface

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An analytical model for the particle pushing phenomenon that occurs between spherical particles and advancing curved solid/liquid interfaces during solidification of pure melts is presented. An expression for the critical interface velocity for encapturing particles by moving solid/liquid interfaces has been developed for the steady-state condition. As a first step, the actual shape of the interface behind the particle is computed in terms of the thermal conductivity ratio of the particle to that of the melt and the temperature gradient ahead of the interface; based on assumed subject, the critical interface velocity is calculated using the force balance between the attractive forces and repulsive forces acting on the particle. The critical interface velocity under steady-state conditions in aluminum containing SiC particle (10 µm) comes out to be 5800 µm/s according to the present model; this calculated velocity is much closer to the experimental observations of Wu et al., as compared to the predictions of the models proposed by earlier workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Rohatgi, R. Asthana, and S. Das: Int. Met. Rev., 1986, vol. 31 (3), pp. 115–39

    CAS  Google Scholar 

  2. A. Mortensen and I. Jin: Int. Met. Rev., 1992, vol. 37 (3), pp. 101–28.

    CAS  Google Scholar 

  3. P.K. Rohatgi, R. Asthana, and F. Yarandi: in Solidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 51–75.

    Google Scholar 

  4. D.M. Stefanescu and B.K. Dhindaw: In Metals Handbook, ASM INTERNATIONAL, Metals Park, OH, 1988, vol. 15, pp. 142–47.

    Google Scholar 

  5. K.C. Russel, J.A. Cornie, and S.Y. Oh: in Interfaces in Metal Matrix Composites, A.K. Dhingra and S.G. Fishman, eds., TMS, Warrendale, PA, 1986, pp. 61–91.

    Google Scholar 

  6. R. Asthana and S.N. Tewari: J. Mater. Sci., 1993, pp. 5414–25.

  7. D.J. Lloyd: Compos. Sci. Technol., 1989, vol. 35, pp. 159–79.

    Article  CAS  Google Scholar 

  8. C.E. Schevzov and F. Weinberg: Metall. Trans. B, 1985, vol. 16B, pp. 367–75.

    Google Scholar 

  9. J.W. McCoy and F.E. Wawner: in Cast Reinforced Metal Composites, S.G. Fishman and A.K. Dhingra, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 237–42.

    Google Scholar 

  10. D.M. Stefanescu, B.K. Dhindaw, A.S. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.

    CAS  Google Scholar 

  11. D.M. Stefanescu, A. Moitra, A.S. Kakar, and B.K. Dhindaw: Metall. Trans. A, 1990, vol. 21A, pp. 231–39.

    CAS  Google Scholar 

  12. S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47 (9), pp. 3956–62.

    Article  CAS  Google Scholar 

  13. A.W. Newmann, J. Szekely, and E.J. Rabenda: J. Colloid Interface Sci., 1973, vol. 43 (3), pp. 727–32.

    Article  Google Scholar 

  14. S.N. Omenyi, R.P. Smith, and A.W. Neumann: J. Colloid Interface Sci., 1980, vol. 75 (1), pp. 117–25.

    Article  CAS  Google Scholar 

  15. J. Cisse and G.F. Bolling: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.

    Article  Google Scholar 

  16. J. Cisse and G.F. Bolling: J. Cryst. Growth, 1971, vol. 11, pp. 25–28.

    Article  CAS  Google Scholar 

  17. C. Korber, G. Rau, M.D. Cosman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 72, pp. 649–62.

    Article  CAS  Google Scholar 

  18. B.K. Dhindaw, A. Moitra, D.M. Stefanescu, and P.A. Curreri: Metall. Trans. A, 1988, vol. 19A, pp. 1899–1904.

    CAS  Google Scholar 

  19. R.P. Smith, D. Li, D.W. Francis, J. Chappuis, and A.W. Newmann: J. Colloid Interface Sci., 1993, vol. 157, pp. 478–84.

    Article  CAS  Google Scholar 

  20. D.R. Uhlman, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35 (10), pp. 2986–93.

    Article  Google Scholar 

  21. A.A. Chernov, D.E. Temkin, and A.M. Melnikova: Sov. Phys. Crystallogr., 1976, vol. 21, pp. 369–74.

    Google Scholar 

  22. A.A. Chernov and A.M. Melnikova: Sov. Phys. Crystallogr., 1966, vol. 10, pp. 672–75.

    Google Scholar 

  23. A.A. Chernov, D.E. Temkin, and A.M. Melnikova: Sov. Phys. Crystallogr., 1977, vol. 22, pp. 656–58.

    Google Scholar 

  24. P. Hoekstra and R.D. Miller: J. Colloid Interface Sci., 1967, vol. 25, p. 166.

    Article  CAS  Google Scholar 

  25. R.R. Gilpin: J. Colloid Interface Sci., 1980, vol. 74, pp. 44–63.

    Article  CAS  Google Scholar 

  26. D. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.

    CAS  Google Scholar 

  27. J. Potschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.

    Article  Google Scholar 

  28. P.F. Aubourg: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1978.

    Google Scholar 

  29. P. Casses and M.A. Azouni-Aidi: Adv. Colloid Interface Sci., 1994, vol. 50, pp. 103–20.

    Article  CAS  Google Scholar 

  30. R. Sasikumar, T.R. Ramamohan, and B.C. Pai: Acta Metall. Mater., 1989, vol. 37 (7), pp. 2085–91.

    Article  Google Scholar 

  31. A.M. Zubko, V.G. Lobanov, and V.V. Nikonova: Sov. Phys. Crystallogr., 1973, vol. 18, pp. 239–41.

    Google Scholar 

  32. M.K. Surrappa and P.K. Rohatgi: J. Mater. Sci. Lett., 1981, vol. 16 (2), pp. 562–64.

    Google Scholar 

  33. B.V. Derjaguin: Theory of Stability of Colloids and Thin Films, Consultants Bureau, New York, NY, 1989, p. 30

    Google Scholar 

  34. Y. Wu, H. Liu, and E.J. Lavernia: Acta Metall. Mater., 1994, vol. 42 (3), pp. 825–37.

    Article  CAS  Google Scholar 

  35. M.A. Khan and P.K. Rohatgi: Composite Eng., 1993, vol. 3 (10), pp. 995–1006.

    Article  Google Scholar 

  36. H. Pang, D.M. Stefanescu, and B.K. Dhindaw: 2nd Int. Conf. on “Cast Metal Matrix Composites”, Tuscaloosa, AL, American Foundrymen’s Society, Inc. 1993, pp. 57–69.

    Google Scholar 

  37. D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, Van Nostrand Reinhold Co., New York, NY. 1981, pp. 101–30.

    Google Scholar 

  38. P.K. Rohatgi, K. Pasciak, S. Ray, C.S. Narendranath, and A. Sachdeva: J. Mater. Sci., 1994, vol. 29, pp. 5357–66.

    Article  CAS  Google Scholar 

  39. J.A. Sekhar and R. Trivedi: in Solidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 39–50.

    Google Scholar 

  40. E.A. Brandes: Smithell’s Metals Reference Book, Butterworth and Co Ltd., Sevenoaks, Kent, United Kingdom, 1983, pp. 14.7–14.8.

    Google Scholar 

  41. J. Shackelford and W. Alexander: The CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 1992, pp. 436–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Rohatgi, P.K. An analytical solution of the critical interface velocity for the encapturing of insoluble particles by a moving solid/liquid interface. Metall Mater Trans A 29, 351–358 (1998). https://doi.org/10.1007/s11661-998-0186-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0186-y

Keywords

Navigation