Metallurgical and Materials Transactions A

, Volume 29, Issue 1, pp 351–358 | Cite as

An analytical solution of the critical interface velocity for the encapturing of insoluble particles by a moving solid/liquid interface

  • J. K. Kim
  • P. K. Rohatgi


An analytical model for the particle pushing phenomenon that occurs between spherical particles and advancing curved solid/liquid interfaces during solidification of pure melts is presented. An expression for the critical interface velocity for encapturing particles by moving solid/liquid interfaces has been developed for the steady-state condition. As a first step, the actual shape of the interface behind the particle is computed in terms of the thermal conductivity ratio of the particle to that of the melt and the temperature gradient ahead of the interface; based on assumed subject, the critical interface velocity is calculated using the force balance between the attractive forces and repulsive forces acting on the particle. The critical interface velocity under steady-state conditions in aluminum containing SiC particle (10 µm) comes out to be 5800 µm/s according to the present model; this calculated velocity is much closer to the experimental observations of Wu et al., as compared to the predictions of the models proposed by earlier workers.


Temperature Gradient Material Transaction Metal Matrix Composite Repulsive Force Critical Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.K. Rohatgi, R. Asthana, and S. Das: Int. Met. Rev., 1986, vol. 31 (3), pp. 115–39Google Scholar
  2. 2.
    A. Mortensen and I. Jin: Int. Met. Rev., 1992, vol. 37 (3), pp. 101–28.Google Scholar
  3. 3.
    P.K. Rohatgi, R. Asthana, and F. Yarandi: in Solidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 51–75.Google Scholar
  4. 4.
    D.M. Stefanescu and B.K. Dhindaw: In Metals Handbook, ASM INTERNATIONAL, Metals Park, OH, 1988, vol. 15, pp. 142–47.Google Scholar
  5. 5.
    K.C. Russel, J.A. Cornie, and S.Y. Oh: in Interfaces in Metal Matrix Composites, A.K. Dhingra and S.G. Fishman, eds., TMS, Warrendale, PA, 1986, pp. 61–91.Google Scholar
  6. 6.
    R. Asthana and S.N. Tewari: J. Mater. Sci., 1993, pp. 5414–25.Google Scholar
  7. 7.
    D.J. Lloyd: Compos. Sci. Technol., 1989, vol. 35, pp. 159–79.CrossRefGoogle Scholar
  8. 8.
    C.E. Schevzov and F. Weinberg: Metall. Trans. B, 1985, vol. 16B, pp. 367–75.Google Scholar
  9. 9.
    J.W. McCoy and F.E. Wawner: in Cast Reinforced Metal Composites, S.G. Fishman and A.K. Dhingra, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 237–42.Google Scholar
  10. 10.
    D.M. Stefanescu, B.K. Dhindaw, A.S. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.Google Scholar
  11. 11.
    D.M. Stefanescu, A. Moitra, A.S. Kakar, and B.K. Dhindaw: Metall. Trans. A, 1990, vol. 21A, pp. 231–39.Google Scholar
  12. 12.
    S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47 (9), pp. 3956–62.CrossRefGoogle Scholar
  13. 13.
    A.W. Newmann, J. Szekely, and E.J. Rabenda: J. Colloid Interface Sci., 1973, vol. 43 (3), pp. 727–32.CrossRefGoogle Scholar
  14. 14.
    S.N. Omenyi, R.P. Smith, and A.W. Neumann: J. Colloid Interface Sci., 1980, vol. 75 (1), pp. 117–25.CrossRefGoogle Scholar
  15. 15.
    J. Cisse and G.F. Bolling: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.CrossRefGoogle Scholar
  16. 16.
    J. Cisse and G.F. Bolling: J. Cryst. Growth, 1971, vol. 11, pp. 25–28.CrossRefGoogle Scholar
  17. 17.
    C. Korber, G. Rau, M.D. Cosman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 72, pp. 649–62.CrossRefGoogle Scholar
  18. 18.
    B.K. Dhindaw, A. Moitra, D.M. Stefanescu, and P.A. Curreri: Metall. Trans. A, 1988, vol. 19A, pp. 1899–1904.Google Scholar
  19. 19.
    R.P. Smith, D. Li, D.W. Francis, J. Chappuis, and A.W. Newmann: J. Colloid Interface Sci., 1993, vol. 157, pp. 478–84.CrossRefGoogle Scholar
  20. 20.
    D.R. Uhlman, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35 (10), pp. 2986–93.CrossRefGoogle Scholar
  21. 21.
    A.A. Chernov, D.E. Temkin, and A.M. Melnikova: Sov. Phys. Crystallogr., 1976, vol. 21, pp. 369–74.Google Scholar
  22. 22.
    A.A. Chernov and A.M. Melnikova: Sov. Phys. Crystallogr., 1966, vol. 10, pp. 672–75.Google Scholar
  23. 23.
    A.A. Chernov, D.E. Temkin, and A.M. Melnikova: Sov. Phys. Crystallogr., 1977, vol. 22, pp. 656–58.Google Scholar
  24. 24.
    P. Hoekstra and R.D. Miller: J. Colloid Interface Sci., 1967, vol. 25, p. 166.CrossRefGoogle Scholar
  25. 25.
    R.R. Gilpin: J. Colloid Interface Sci., 1980, vol. 74, pp. 44–63.CrossRefGoogle Scholar
  26. 26.
    D. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.Google Scholar
  27. 27.
    J. Potschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.CrossRefGoogle Scholar
  28. 28.
    P.F. Aubourg: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1978.Google Scholar
  29. 29.
    P. Casses and M.A. Azouni-Aidi: Adv. Colloid Interface Sci., 1994, vol. 50, pp. 103–20.CrossRefGoogle Scholar
  30. 30.
    R. Sasikumar, T.R. Ramamohan, and B.C. Pai: Acta Metall. Mater., 1989, vol. 37 (7), pp. 2085–91.CrossRefGoogle Scholar
  31. 31.
    A.M. Zubko, V.G. Lobanov, and V.V. Nikonova: Sov. Phys. Crystallogr., 1973, vol. 18, pp. 239–41.Google Scholar
  32. 32.
    M.K. Surrappa and P.K. Rohatgi: J. Mater. Sci. Lett., 1981, vol. 16 (2), pp. 562–64.Google Scholar
  33. 33.
    B.V. Derjaguin: Theory of Stability of Colloids and Thin Films, Consultants Bureau, New York, NY, 1989, p. 30Google Scholar
  34. 34.
    Y. Wu, H. Liu, and E.J. Lavernia: Acta Metall. Mater., 1994, vol. 42 (3), pp. 825–37.CrossRefGoogle Scholar
  35. 35.
    M.A. Khan and P.K. Rohatgi: Composite Eng., 1993, vol. 3 (10), pp. 995–1006.CrossRefGoogle Scholar
  36. 36.
    H. Pang, D.M. Stefanescu, and B.K. Dhindaw: 2nd Int. Conf. on “Cast Metal Matrix Composites”, Tuscaloosa, AL, American Foundrymen’s Society, Inc. 1993, pp. 57–69.Google Scholar
  37. 37.
    D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, Van Nostrand Reinhold Co., New York, NY. 1981, pp. 101–30.Google Scholar
  38. 38.
    P.K. Rohatgi, K. Pasciak, S. Ray, C.S. Narendranath, and A. Sachdeva: J. Mater. Sci., 1994, vol. 29, pp. 5357–66.CrossRefGoogle Scholar
  39. 39.
    J.A. Sekhar and R. Trivedi: in Solidification of Metal Matrix Composites, P.K. Rohatgi, ed., TMS, Warrendale, PA, 1990, pp. 39–50.Google Scholar
  40. 40.
    E.A. Brandes: Smithell’s Metals Reference Book, Butterworth and Co Ltd., Sevenoaks, Kent, United Kingdom, 1983, pp. 14.7–14.8.Google Scholar
  41. 41.
    J. Shackelford and W. Alexander: The CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 1992, pp. 436–38.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • J. K. Kim
    • 1
  • P. K. Rohatgi
    • 1
  1. 1.the Materials DepartmentUniversity of Wisconsin-MilwaukeeMilwaukee

Personalised recommendations