Skip to main content
Log in

Particle engulfment and pushing by solidifying interfaces: Part II. Microgravity experiments and theoretical analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Results of the directional solidification (DS) experiments on particle engulfment and pushing by solidifying interfaces (PEP), conducted on the space shuttle Columbia during the Life and Microgravity Science (LMS) Mission, are reported. Two pure aluminum (99.999 pct) 9 mm cylindrical rods, loaded with about 2 vol pct 500µm-diameter zirconia particles, were melted and resolidified in the microgravity (µg) environment of the shuttle. One sample was processed at a stepwise increased solidification velocity and the other at a stepwise decreased velocity. It was found that a pushing/engulfment transition (PET) occurred in the velocity range of 0.5 to 1 µm/s. This is smaller than the ground PET velocity of 1.9 to 2.4 µm/s. This demonstrates that natural convection increases the critical velocity. A previously proposed analytical model for PEP was further developed. A major effort to identify and produce data for the surface energy of various interfaces required for calculation was undertaken. The predicted critical velocity for PET was 0.775 µm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

coefficient (0 for no contact and 1 for perfect contact)

a O :

atomic diameter

A :

Hammaker constant

B :

constant defining the disjoining pressure (CTM model)

d :

equilibrium distance

d cr :

critical distance

D :

liquid diffusivity

E vdW :

van der Waals energy

F g :

gravity force

F D :

drag force

F L :

life force

F vdW :

van der Waals force

F γσ :

interaction force between the particle and the SL interface

G :

temperature gradient in the liquid (CTM model)

ΔH f :

latent heat of fusion

ΔH vap :

heat of sublimation

kB :

Boltzman’s constant

K O :

material constant

K*:

ratio between the thermal conductivity of the particle (K P) and of the liquid (K L)

n :

exponent between 2 and 7 (UCJ and SAS models)

R :

particle radius

ΔS f :

entropy of fusion

T :

temperature

V :

velocity

V cr :

critical velocity

V L :

fluid velocity at the SL interface parallel to the interface

V SL :

solidification velocity

W ad :

work of adhesion

γ :

surface energy

η :

liquid viscosity

ϑ :

contact angle

σ :

surface tension

Δσ O :

surface tension difference

Δγ0 :

surface energy difference

Θ:

atomic volume

Ω (∞):

function with value of 0.34

L :

liquid (matrix)

P :

particle

S :

solid (matrix)

References

  1. S. Sen, B.K. Dhindaw, D.M. Stefanescu, A. Catalina, and P.A. Curreri: J. Cryst. Growth, 1997, vol. 173, pp. 574–84.

    Article  CAS  Google Scholar 

  2. A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1977, vol. 22 (6), pp. 656–58.

    Google Scholar 

  3. A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1976, vol. 21 (4), pp. 369–74.

    Google Scholar 

  4. G.F. Bolling and J.A. Cissé: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.

    Article  CAS  Google Scholar 

  5. D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.

    CAS  Google Scholar 

  6. D.K. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.

    CAS  Google Scholar 

  7. C. Körber, G. Rau, M.D. Causman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 27, pp. 649–62.

    Article  Google Scholar 

  8. J. Pötschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.

    Article  Google Scholar 

  9. Q. Han and J.D. Hunt: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (6), pp. 693–94.

    CAS  Google Scholar 

  10. R.B. Fedich and W.R. Wilcox: Sep. Sci. Technol., 1980, vol. 15 (1), pp. 31–38.

    CAS  Google Scholar 

  11. R.H. Nunn: Intermediate Fluid Mechanics, Hemisphere Publishing Co., New York, NY, 1989, pp. 51–55.

    Google Scholar 

  12. D.R. Uhlmann, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986–93.

    Article  CAS  Google Scholar 

  13. A. Cottrell: Introduction to the Modern Theory of Metals, The Institute of Metals, London, 1988.

    Google Scholar 

  14. P.K. Rohatgi, S. Ray, R. Asthana, and C.S. Narendranath: Mater. Sci. Eng., 1993, vol. A162, pp. 163–74.

    CAS  Google Scholar 

  15. A.W. Neumann, R.J. Good, C.J. Hope, and M. Sejpal: J. Colloid Interface Sci., 1974, vol. 69 (2), pp. 291–302.

    Article  Google Scholar 

  16. S.N. Omenyi, A.W. Neumann, and C.J. Van Oss: J. Appl. Phys., 1981, vol. 52 (2) pp. 789–95.

    Article  CAS  Google Scholar 

  17. A.W. Adamson: Physical Chemistry of Surfaces, John Wiley & Sons, Inc., New York, NY, 1982.

    Google Scholar 

  18. D.T. Livey and P. Murray: J. Am. Ceramic Soc., 1956, vol. 39 (11), pp. 363–72.

    Article  Google Scholar 

  19. W.D. Kingery: J. Am. Ceramic Soc., 1954, vol. 37 (2), pp. 42–45.

    Article  CAS  Google Scholar 

  20. S.H. Overbury, P.A. Bertrand, and G.A. Somorjai: Chem. Rev., 1975, vol. 75 (5), pp. 547–57.

    Article  CAS  Google Scholar 

  21. L.R. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975.

    Google Scholar 

  22. A.A. Chernov: private communication, University Space Research Association, Huntsville, AL, 1997.

  23. J.G. Li: Ceram. Int., 1994, vol. 20, pp. 391–412.

    Article  CAS  Google Scholar 

  24. CRC Handbook of Chemistry and Physics, 67th ed., R.C. Weast, ed., CRC Press Inc., Boca Raton, FL, 1986.

    Google Scholar 

  25. T. lida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988.

    Google Scholar 

  26. ASM Handbook, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 1099–1201.

  27. Thermophysical Properties of High Temperature Solid Materials, Y.S. Touloukian, ed., The Macmillan Company, New York, NY, vol. 4.

  28. Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens: Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1970, vol. 1.

    Google Scholar 

  29. G. Kaptay: Mater. Sci. Forum, 1994, vol. 20, pp. 467–74.

    Google Scholar 

  30. D.J. Shaw: Introduction to Colloid and Surface Chemistry, Butterworth and Co., London, 1980.

    Google Scholar 

  31. D. Langebin: in Intermolecular Forces, B. Pullman, ed., Reidel, Dordrecht, Netherlands, 1981, p. 547.

    Google Scholar 

  32. S.N. Omenyi and A.W. Neumann: J. Appl. Phy., 1976, vol. 47, p. 3956.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanescu, D.M., Juretzko, F.R., Catalina, A. et al. Particle engulfment and pushing by solidifying interfaces: Part II. Microgravity experiments and theoretical analysis. Metall Mater Trans A 29, 1697–1706 (1998). https://doi.org/10.1007/s11661-998-0092-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0092-3

Keywords

Navigation