Advertisement

Metallurgical and Materials Transactions A

, Volume 29, Issue 6, pp 1697–1706 | Cite as

Particle engulfment and pushing by solidifying interfaces: Part II. Microgravity experiments and theoretical analysis

  • D. M. Stefanescu
  • F. R. Juretzko
  • A. Catalina
  • B. K. Dhindaw
  • S. Sen
  • P. A. Curreri
Article

Abstract

Results of the directional solidification (DS) experiments on particle engulfment and pushing by solidifying interfaces (PEP), conducted on the space shuttle Columbia during the Life and Microgravity Science (LMS) Mission, are reported. Two pure aluminum (99.999 pct) 9 mm cylindrical rods, loaded with about 2 vol pct 500µm-diameter zirconia particles, were melted and resolidified in the microgravity (µg) environment of the shuttle. One sample was processed at a stepwise increased solidification velocity and the other at a stepwise decreased velocity. It was found that a pushing/engulfment transition (PET) occurred in the velocity range of 0.5 to 1 µm/s. This is smaller than the ground PET velocity of 1.9 to 2.4 µm/s. This demonstrates that natural convection increases the critical velocity. A previously proposed analytical model for PEP was further developed. A major effort to identify and produce data for the surface energy of various interfaces required for calculation was undertaken. The predicted critical velocity for PET was 0.775 µm/s.

Keywords

Material Transaction Natural Convection Repulsive Force Critical Velocity Zirconia Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

a

coefficient (0 for no contact and 1 for perfect contact)

aO

atomic diameter

A

Hammaker constant

B

constant defining the disjoining pressure (CTM model)

d

equilibrium distance

dcr

critical distance

D

liquid diffusivity

EvdW

van der Waals energy

Fg

gravity force

FD

drag force

FL

life force

FvdW

van der Waals force

Fγσ

interaction force between the particle and the SL interface

G

temperature gradient in the liquid (CTM model)

ΔHf

latent heat of fusion

ΔHvap

heat of sublimation

kB

Boltzman’s constant

KO

material constant

K*

ratio between the thermal conductivity of the particle (K P) and of the liquid (K L)

n

exponent between 2 and 7 (UCJ and SAS models)

R

particle radius

ΔSf

entropy of fusion

T

temperature

V

velocity

Vcr

critical velocity

VL

fluid velocity at the SL interface parallel to the interface

VSL

solidification velocity

Wad

work of adhesion

γ

surface energy

η

liquid viscosity

ϑ

contact angle

σ

surface tension

ΔσO

surface tension difference

Δγ0

surface energy difference

Θ

atomic volume

Ω (∞)

function with value of 0.34

Subscripts

L

liquid (matrix)

P

particle

S

solid (matrix)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sen, B.K. Dhindaw, D.M. Stefanescu, A. Catalina, and P.A. Curreri: J. Cryst. Growth, 1997, vol. 173, pp. 574–84.CrossRefGoogle Scholar
  2. 2.
    A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1977, vol. 22 (6), pp. 656–58.Google Scholar
  3. 3.
    A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1976, vol. 21 (4), pp. 369–74.Google Scholar
  4. 4.
    G.F. Bolling and J.A. Cissé: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.CrossRefGoogle Scholar
  5. 5.
    D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.Google Scholar
  6. 6.
    D.K. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.Google Scholar
  7. 7.
    C. Körber, G. Rau, M.D. Causman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 27, pp. 649–62.CrossRefGoogle Scholar
  8. 8.
    J. Pötschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.CrossRefGoogle Scholar
  9. 9.
    Q. Han and J.D. Hunt: Iron Steel Inst. Jpn. Int., 1995, vol. 35 (6), pp. 693–94.Google Scholar
  10. 10.
    R.B. Fedich and W.R. Wilcox: Sep. Sci. Technol., 1980, vol. 15 (1), pp. 31–38.Google Scholar
  11. 11.
    R.H. Nunn: Intermediate Fluid Mechanics, Hemisphere Publishing Co., New York, NY, 1989, pp. 51–55.Google Scholar
  12. 12.
    D.R. Uhlmann, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986–93.CrossRefGoogle Scholar
  13. 13.
    A. Cottrell: Introduction to the Modern Theory of Metals, The Institute of Metals, London, 1988.Google Scholar
  14. 14.
    P.K. Rohatgi, S. Ray, R. Asthana, and C.S. Narendranath: Mater. Sci. Eng., 1993, vol. A162, pp. 163–74.Google Scholar
  15. 15.
    A.W. Neumann, R.J. Good, C.J. Hope, and M. Sejpal: J. Colloid Interface Sci., 1974, vol. 69 (2), pp. 291–302.CrossRefGoogle Scholar
  16. 16.
    S.N. Omenyi, A.W. Neumann, and C.J. Van Oss: J. Appl. Phys., 1981, vol. 52 (2) pp. 789–95.CrossRefGoogle Scholar
  17. 17.
    A.W. Adamson: Physical Chemistry of Surfaces, John Wiley & Sons, Inc., New York, NY, 1982.Google Scholar
  18. 18.
    D.T. Livey and P. Murray: J. Am. Ceramic Soc., 1956, vol. 39 (11), pp. 363–72.CrossRefGoogle Scholar
  19. 19.
    W.D. Kingery: J. Am. Ceramic Soc., 1954, vol. 37 (2), pp. 42–45.CrossRefGoogle Scholar
  20. 20.
    S.H. Overbury, P.A. Bertrand, and G.A. Somorjai: Chem. Rev., 1975, vol. 75 (5), pp. 547–57.CrossRefGoogle Scholar
  21. 21.
    L.R. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975.Google Scholar
  22. 22.
    A.A. Chernov: private communication, University Space Research Association, Huntsville, AL, 1997.Google Scholar
  23. 23.
    J.G. Li: Ceram. Int., 1994, vol. 20, pp. 391–412.CrossRefGoogle Scholar
  24. 24.
    CRC Handbook of Chemistry and Physics, 67th ed., R.C. Weast, ed., CRC Press Inc., Boca Raton, FL, 1986.Google Scholar
  25. 25.
    T. lida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988.Google Scholar
  26. 26.
    ASM Handbook, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 1099–1201.Google Scholar
  27. 27.
    Thermophysical Properties of High Temperature Solid Materials, Y.S. Touloukian, ed., The Macmillan Company, New York, NY, vol. 4.Google Scholar
  28. 28.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens: Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1970, vol. 1.Google Scholar
  29. 29.
    G. Kaptay: Mater. Sci. Forum, 1994, vol. 20, pp. 467–74.Google Scholar
  30. 30.
    D.J. Shaw: Introduction to Colloid and Surface Chemistry, Butterworth and Co., London, 1980.Google Scholar
  31. 31.
    D. Langebin: in Intermolecular Forces, B. Pullman, ed., Reidel, Dordrecht, Netherlands, 1981, p. 547.Google Scholar
  32. 32.
    S.N. Omenyi and A.W. Neumann: J. Appl. Phy., 1976, vol. 47, p. 3956.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • D. M. Stefanescu
    • 1
  • F. R. Juretzko
    • 1
  • A. Catalina
    • 1
  • B. K. Dhindaw
    • 2
  • S. Sen
    • 3
  • P. A. Curreri
    • 3
  1. 1.The University of AlabamaTuscaloosa
  2. 2.IIT KharagpurIndia
  3. 3.the NASA Marshall Space Flight CenterHuntsville

Personalised recommendations