Skip to main content
Log in

Particle engulfment and pushing by solidifying interfaces: Part 1. Ground experiments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999 pct A1 and 99.95 pct Zn) and spherical particles (500 µm in diameter) were used. The particles were nonreactive with the matrices within the temperature range of interest. The experiments were conducted so as to ensure a planar solid/liquid (SL) interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy (XTM) for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition (PET). It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 µm/s for Al/ZrO2 and from 1.9 to 2.9 µm/s for Zn/ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47(9), pp. 3956–62.

    Article  CAS  Google Scholar 

  2. D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.

    CAS  Google Scholar 

  3. A.R. Kennedy and T.W. Clyne: Cast Met., 1991, vol. 4(3), pp. 160–64.

    Google Scholar 

  4. Y. Wu, H. Liu, and E.J. Lavernia: Acta Metall. Mater., 1994, vol. 42(3), pp. 825–37.

    Article  CAS  Google Scholar 

  5. D.E. Lawrynowicz, B. Li, and J. Lavernia: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 877–97.

    CAS  Google Scholar 

  6. A. Endo, H.S. Chauhan, T. Egi, and Y. Shiohara: J. Mater. Res., 1996, vol. 11(4), pp. 795–803.

    CAS  Google Scholar 

  7. C. Körber, G. Rau, M.D. Cosman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 72, pp. 649–62.

    Article  Google Scholar 

  8. K.A. Jackson and B. Chalmers: J. Appl. Phys., 1958, vol. 29(8), pp. 1178–81.

    Article  Google Scholar 

  9. A.E. Corte: J. Geophys. Res., 1962, vol. 67(3), pp. 1085–90.

    Article  Google Scholar 

  10. A. Mortensen and I. Jin: Int. Mater. Rev., 1992, vol. 37(3), pp. 101–23.

    CAS  Google Scholar 

  11. M.K. Premkumar and M.G. Chu: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 2358–62.

    CAS  Google Scholar 

  12. L. Yaohui, H. Zhenming, L. Shufan, all. Y. Zhanchao: J. Mater. Sci., 1993, vol. 2, pp. 254–56.

    Google Scholar 

  13. A.R. Kennedy and T.W. Clyne: Cast Met., 1991, vol. 4(3), pp. 160–64.

    Google Scholar 

  14. Y. Fasoyinu and C.E. Schvezov: Proc. F. Weinberg Int. Symp. on Solidification Processing, Pergamon Press, Toronto, 1990, pp. 243–52.

    Google Scholar 

  15. D.M. Stefanescu, A. Moitra, AS Kacar, and B.K. Dhindaw: Metall. Trans. A, 1990, vol. 21A, pp. 231–39.

    CAS  Google Scholar 

  16. B.K. Dhindaw, A. Moitra, D.M. Stefanescu, and P. Curreri: Metall. Trans. A, 1988, vol. 19A, pp. 1899–1904.

    CAS  Google Scholar 

  17. Y. Wu, H. Liu, and E.J. Lavernia: Acta. Metall. Mater., 1994, vol. 42(3), pp. 825–37.

    Article  CAS  Google Scholar 

  18. C.E. Schvezov, and F. Weinberg: Metall. Trans. B, 1985, vol. 16B, pp. 367–75.

    CAS  Google Scholar 

  19. U. Hecht and S. Rex: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 867–74.

    CAS  Google Scholar 

  20. J.C. Viala, F. Bosselet, V. Laurent, and Y. Lepetitcorps: J. Mater. Sci., 1993, vol. 28, pp. 5301–12.

    Article  CAS  Google Scholar 

  21. H. Pang, D.M. Stefanescu, and B.K. Dhindaw: in Cast Metal Matrix Composites, D.M. Stefanescu and S. Sen, eds., American Foundarymen’s Society, Des Plaines, IL, 1994, pp. 57–69.

    Google Scholar 

  22. J.A. Sekhar and R. Trivedi: Mater. Sci. Eng., 1991, vol. A147, pp. 9–21.

    Google Scholar 

  23. C.T. Lynch and H.M. Burte: in Metal Matrix Composites, ASTM STP 438, ASTM, Philadelphia, PA, 1968.

  24. J.G. Li: Ceram. Int., 1994, vol. 20, pp. 391–412.

    Article  CAS  Google Scholar 

  25. P.A. Curreri and W.F. Kaukler: Metall. Trans. Mater. A, 1996, vol. 27A, pp. 801–08.

    CAS  Google Scholar 

  26. B.K. Dhindaw, P. Ganguly, F.R. Juretzko, and D.M. Stefanescu: in Experimental Methods for Microgravity Materials Science, R.A. Schiffman, ed, TMS, Warrendale, PA, in Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juretzko, F.R., Stefanescu, D.M., Dhindaw, B.K. et al. Particle engulfment and pushing by solidifying interfaces: Part 1. Ground experiments. Metall Mater Trans A 29, 1691–1696 (1998). https://doi.org/10.1007/s11661-998-0091-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0091-4

Keywords

Navigation