Metallurgical and Materials Transactions A

, Volume 29, Issue 6, pp 1691–1696 | Cite as

Particle engulfment and pushing by solidifying interfaces: Part 1. Ground experiments

  • Frank R. Juretzko
  • Doru M. Stefanescu
  • Brij K. Dhindaw
  • Subhayu Sen
  • Peter A. Curreri


Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999 pct A1 and 99.95 pct Zn) and spherical particles (500 µm in diameter) were used. The particles were nonreactive with the matrices within the temperature range of interest. The experiments were conducted so as to ensure a planar solid/liquid (SL) interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy (XTM) for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition (PET). It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 µm/s for Al/ZrO2 and from 1.9 to 2.9 µm/s for Zn/ZrO2.


Material Transaction Critical Velocity BRIJ Particle Behavior Zirconia Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47(9), pp. 3956–62.CrossRefGoogle Scholar
  2. 2.
    D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra: Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.Google Scholar
  3. 3.
    A.R. Kennedy and T.W. Clyne: Cast Met., 1991, vol. 4(3), pp. 160–64.Google Scholar
  4. 4.
    Y. Wu, H. Liu, and E.J. Lavernia: Acta Metall. Mater., 1994, vol. 42(3), pp. 825–37.CrossRefGoogle Scholar
  5. 5.
    D.E. Lawrynowicz, B. Li, and J. Lavernia: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 877–97.Google Scholar
  6. 6.
    A. Endo, H.S. Chauhan, T. Egi, and Y. Shiohara: J. Mater. Res., 1996, vol. 11(4), pp. 795–803.Google Scholar
  7. 7.
    C. Körber, G. Rau, M.D. Cosman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 72, pp. 649–62.CrossRefGoogle Scholar
  8. 8.
    K.A. Jackson and B. Chalmers: J. Appl. Phys., 1958, vol. 29(8), pp. 1178–81.CrossRefGoogle Scholar
  9. 9.
    A.E. Corte: J. Geophys. Res., 1962, vol. 67(3), pp. 1085–90.CrossRefGoogle Scholar
  10. 10.
    A. Mortensen and I. Jin: Int. Mater. Rev., 1992, vol. 37(3), pp. 101–23.Google Scholar
  11. 11.
    M.K. Premkumar and M.G. Chu: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 2358–62.Google Scholar
  12. 12.
    L. Yaohui, H. Zhenming, L. Shufan, all. Y. Zhanchao: J. Mater. Sci., 1993, vol. 2, pp. 254–56.Google Scholar
  13. 13.
    A.R. Kennedy and T.W. Clyne: Cast Met., 1991, vol. 4(3), pp. 160–64.Google Scholar
  14. 14.
    Y. Fasoyinu and C.E. Schvezov: Proc. F. Weinberg Int. Symp. on Solidification Processing, Pergamon Press, Toronto, 1990, pp. 243–52.Google Scholar
  15. 15.
    D.M. Stefanescu, A. Moitra, AS Kacar, and B.K. Dhindaw: Metall. Trans. A, 1990, vol. 21A, pp. 231–39.Google Scholar
  16. 16.
    B.K. Dhindaw, A. Moitra, D.M. Stefanescu, and P. Curreri: Metall. Trans. A, 1988, vol. 19A, pp. 1899–1904.Google Scholar
  17. 17.
    Y. Wu, H. Liu, and E.J. Lavernia: Acta. Metall. Mater., 1994, vol. 42(3), pp. 825–37.CrossRefGoogle Scholar
  18. 18.
    C.E. Schvezov, and F. Weinberg: Metall. Trans. B, 1985, vol. 16B, pp. 367–75.Google Scholar
  19. 19.
    U. Hecht and S. Rex: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 867–74.Google Scholar
  20. 20.
    J.C. Viala, F. Bosselet, V. Laurent, and Y. Lepetitcorps: J. Mater. Sci., 1993, vol. 28, pp. 5301–12.CrossRefGoogle Scholar
  21. 21.
    H. Pang, D.M. Stefanescu, and B.K. Dhindaw: in Cast Metal Matrix Composites, D.M. Stefanescu and S. Sen, eds., American Foundarymen’s Society, Des Plaines, IL, 1994, pp. 57–69.Google Scholar
  22. 22.
    J.A. Sekhar and R. Trivedi: Mater. Sci. Eng., 1991, vol. A147, pp. 9–21.Google Scholar
  23. 23.
    C.T. Lynch and H.M. Burte: in Metal Matrix Composites, ASTM STP 438, ASTM, Philadelphia, PA, 1968.Google Scholar
  24. 24.
    J.G. Li: Ceram. Int., 1994, vol. 20, pp. 391–412.CrossRefGoogle Scholar
  25. 25.
    P.A. Curreri and W.F. Kaukler: Metall. Trans. Mater. A, 1996, vol. 27A, pp. 801–08.Google Scholar
  26. 26.
    B.K. Dhindaw, P. Ganguly, F.R. Juretzko, and D.M. Stefanescu: in Experimental Methods for Microgravity Materials Science, R.A. Schiffman, ed, TMS, Warrendale, PA, in Press.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • Frank R. Juretzko
    • 1
  • Doru M. Stefanescu
    • 1
  • Brij K. Dhindaw
    • 2
  • Subhayu Sen
    • 3
  • Peter A. Curreri
    • 3
  1. 1.The University of AlabamaTuscaloosa
  2. 2.IITKharagpurIndia
  3. 3.the NASA Marshall Space Flight CenterHuntsville

Personalised recommendations