Skip to main content
Log in

A model for roughness-induced fatigue crack closure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model for predicting the crack closing stress intensity factor for roughness-induced closure of fatigue cracks is developed based on a two-dimensional approach considering crack opening and closure of an idealized crack path. The model highlights the contribution of irreversible cyclic planar slip at the crack tip, and is extended to real cases describing roughness-induced crack closure as a function of fracture surface roughness parameters at low ΔK levels where planar slip prevails. The resulting equation indicates that roughness-induced crack closure depends on the maximum stress intensity factor, the standard deviation of heights as well as the standard deviation of angles of the crack profile elements, and the yield stress of the material. Comparison between the prediction of the model and experimental data of K cl for lamellar microstructures of Ti-2.5 Cu as well as TIMETAL 1100 shows good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

the Burgers vector of a dislocation

B:

the total Burgers vector of an inverted pileup of dislocations at crack tip along the slip plane

c :

the size of dislocation free zone ahead of the crack tip

D ol :

local shear displacement at crack tip along the active slip plane at K cl

D m :

maximum local shear displacement along active slip plane at the crack tip in a load cycle

E :

modulus of elasticity

K cl :

crack closing stress intensity factor

k I :

local mode I stress intensity factor at the tip of a kinked crack

k II :

local mode II stress intensity factor at the tip of a kinked crack

K max :

maximum stress intensity factor in a load cycle

ΔK :

stress intensity factor range

ΔK tr :

stress intensity factor range, where a transition in fracture mechanism takes place

l e :

effective slip length of dislocation resulting in local mode II displacement

l s :

maximum slip length of dislocations

\(\bar l_e \) :

average effective slip length of dislocations

\(\bar l_f \) :

average facet length (arithmetic mean length of linear elements of the crack path profile)

R :

the size of the plastic zone along the slip plane (at R ahead of crack tip, β(x) turns to be zero)

R L :

linear roughness parameter

S S :

standard deviation of the angular distribution of linear elements of the crack path profile

S H :

standard deviation of the height distribution of linear elements of the crack path profile

β(x):

local Burgers vector density in case the discrete dislocations are replaced as continuous linear distribution (db = β(x)dx)

δ ol :

displacement between the two mating crack surfaces in the applied mode I loading direction at K ol

τ :

the stress at crack tip due to elastic crack tip stress field (K field)

θ :

angle denoting the extent of ideal crack path deflection

θ eq :

equivalent orientation angle of real crack path profile, θ eq = arccos (1/R L

v :

Poisson’s ratio

μ :

shear modulus

σ y :

yield strength

CL:

coarse lamellar microstructure of Ti-2.5Cu

CTOD:

crack tip opening displacement

FL:

fine lamellar microstructure of Ti-2.5Cu

LC-1100:

lamellar microstructure with coarse prior-β grains of TIMETAL 1100

LF-1100:

lamellar microstructure with fine prior-β grains of TIMETAL 1100

References

  1. W. Elber: Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  2. W. Elber: Damage Tolerance in Aircraft Structures, ASTM STP 486, ASTM, Philadelphia, PA, 1971, pp. 230–42.

    Google Scholar 

  3. S. Suresh: in Materials Science and Technology, vol. 6, Plastic Deformation and Fracture of Materials, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH Verlagsgesellschaft mbH, Weinheim, 1993, pp. 281–350.

    Google Scholar 

  4. S. Suresh, G.F. Zamiski, and R.O. Ritchie: Metall. Trans. A, 1981, vol. 12A, pp. 1435–43.

    Google Scholar 

  5. H. Kobayashi, H. Tsuji, and K.D. Park: in Fracture and Strength ’90, Key Engineering Materials, Vols. 51 and 52, K.Y. Lee and H. Takahashi, eds., Trans Tech Publications, Zürich, 1990, pp. 355–60.

    Google Scholar 

  6. R.O. Ritchie and S. Suresh: Metall. Trans. A, 1982, vol. 13A, pp. 937–40.

    Google Scholar 

  7. S. Suresh and R.O. Ritchie: Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  8. B. Tomkins: Met. Sci., 1979, vol. 13, pp. 387–95.

    CAS  Google Scholar 

  9. B.A. Bilby, G.E. Cardew, and I.C. Haward: in Fracture 1977, D.M.R. Taplin, ed., University of Waterloo Press, Waterloo, 1977, pp. 197–201.

    Google Scholar 

  10. S. Suresh: Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  11. S. Suresh and C.F. Shih: Int. J. Fract., 1986, vol. 30, pp. 237–59.

    Article  Google Scholar 

  12. N. Walker and C.J. Beevers: Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 135–48.

    Article  CAS  Google Scholar 

  13. S. Suresh: Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  14. J. Wasén and B. Karlsson: in Fatigue 90, H. Kitagawa and T. Tanaka, eds., Materials and Component Engineering Publications Ltd., Birmingham, 1990, pp. 1289–94.

    Google Scholar 

  15. L. Sun, S. Li, Q. Zang, and Z. Wang: Scripta Metall. Mater., 1995, vol. 32, pp. 517–21.

    Article  CAS  Google Scholar 

  16. J. LLorca: in Fatigue 90, H. Kitagawa and T. Tanaka, eds., Materials and Component Engineering Publications Ltd., Birmingham, 1990, pp. 1301–06.

    Google Scholar 

  17. J. LLorca: Fatigue Fract. Eng. Mater. Struct., 1992, vol. 15, pp. 655–69.

    Article  CAS  Google Scholar 

  18. J. Wasén, B. Karlsson, and K. Hamberg: Acta Stereol., 1987, vol. 6, pp. 199–204.

    Google Scholar 

  19. J. Wasén: Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 1988.

    Google Scholar 

  20. B. Karlsson and J. Wasén: Proc. 7th European Conf. on Fracture, EMAS, Warley, 1988, pp. 573–92.

    Google Scholar 

  21. B. Karlsson and J. Wasén: Proc. 7th Int. Conf. on Fracture, Pergamon Press, Oxford, United Kingdom, 1989, pp. 3383–90.

    Google Scholar 

  22. J. Wasén, K. Hamberg, and B. Karlsson: Mater. Sci. Eng. A, 1988, vol. 102, pp. 217–26.

    Article  Google Scholar 

  23. J. Wasén and B. Karlsson: Int. J. Fatigue, 1989, vol. 11, pp. 395–405.

    Article  Google Scholar 

  24. W.W. Gerberich, W. Yu, and K. Esaklul: Metall. Trans. A, 1984, vol. 15A, pp. 875–88.

    CAS  Google Scholar 

  25. A.J. Wilkinson and S.G. Roberts: Scripta Mater., 1996, vol. 35, pp. 1365–71.

    Article  CAS  Google Scholar 

  26. J. Weertman, I.-H. Lin, and R. Thomson: Acta Metall., 1983, vol. 31, pp. 473–82.

    Article  Google Scholar 

  27. R. Thomson: Scripta Metall., 1986, vol. 20, pp. 1473–76.

    Article  Google Scholar 

  28. R. Thomson: Solid State Phys., 1986, vol. 39, pp. 1–129.

    Google Scholar 

  29. S.-H. Dai and J.C.M. Li: Scripta Metall., 1982, vol. vol. 16, pp. 183–88.

    Article  CAS  Google Scholar 

  30. Y.-H. Chiao and D.R. Clarke: Acta Metall., 1989, vol. 37, pp. 203–19.

    Article  CAS  Google Scholar 

  31. B.A. Bilby, A.H. Cottrell, and K.H. Swinden: Proc. R. Soc., 1963, vol. A272, pp. 304–14.

    Google Scholar 

  32. A. Toshimitsu Yokobori, T. Isogai, and T. Yokobori: Acta Metall. Mater., 1993, vol. 41, pp. 1405–11.

    Article  Google Scholar 

  33. S.M. Ohr: Mater. Sci. Eng., 1985, vol. 72, pp. 1–35.

    Article  CAS  Google Scholar 

  34. S.-H. Wang: Ph.D. Thesis, Technical University of Darmstadt, Darmstadt, Germany, 1997.

    Google Scholar 

  35. B. Karlsson and J. Wasén: in Fatigue 90, H. Kitagawa and T. Tanaka, eds., Materials and Component Engineering Publications Ltd., Birmingham, 1990, pp. 279–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SH., Müller, C. & Exner, H.E. A model for roughness-induced fatigue crack closure. Metall Mater Trans A 29, 1933–1939 (1998). https://doi.org/10.1007/s11661-998-0018-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0018-0

Keywords

Navigation