Skip to main content
Log in

Modeling solid solution strengthening in nickel alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The yield stress of multicomponent nickel solid solution alloys has not been modeled in the past with respect to the effects of composition and temperature. There have been investigations of the effect on the yield stress of solutes in binary systems at a fixed temperature, but the effects on the yield stress of multiple solute elements and temperature changes have not been investigated. In this article, two different forms of the trough model are considered for nickel-base alloys to determine the most applicable model for solid solution strengthening in the system. The yield stresses of three binary nickel-chromium and three ternary nickel alloys were determined at a range of temperatures. The yield stress of the alloys was then modeled using the Feltham equation. The constants determined in fitting the Feltham equation to the experimental data were then applied to other experimental solid solution alloys and also to published information on commercial solid solution nickel alloys. It was found that the yield stress of the nickel solid solution alloys could be modeled successfully using the Feltham equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Fleischer: in The Strengthening of Metals, D. Peckner, ed., Reinhold Publishing Corp, New York, NY, 1964, pp. 93–140.

    Google Scholar 

  2. P. Feltham: Br. J. Appl. Phys., 1968, vol. 1, pp. 303–08.

    CAS  Google Scholar 

  3. H. Suzuki: Sci. Rep. RITU A, 1952, vol. 4, pp. 455–63.

    Google Scholar 

  4. U.F. Kocks: Metall. Trans. A, 1985, vol. 16A, pp. 2109–29.

    CAS  Google Scholar 

  5. Z.S. Basinski, R.A. Foxall, and R. Pascual: Scripta Metall., 1972, vol. 6, pp. 807–14.

    Article  CAS  Google Scholar 

  6. C. Schwink and H. Traub: Phys. Status Solidi, 1968, vol. 30, pp. 387–97.

    CAS  Google Scholar 

  7. M.Z. Butt and P. Feltham: J. Mater. Sci., 1993, vol. 28, pp. 2557–76.

    Article  CAS  Google Scholar 

  8. S.M. Hodson: Metallurgical and Thermomechanical Databank, National Physical Laboratory, Teddington, Middlesex, United Kingdom, 1989.

    Google Scholar 

  9. S. Floreen and J.H. Westbrook: Acta Metall., 1969, vol. 17, 1175–81.

    Article  CAS  Google Scholar 

  10. G.E. Deiter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., New York, NY, 1986.

    Google Scholar 

  11. G.A. Alers, J.R. Neighbours, and H. Sato: J. Phys. Chem. Solids, 1960, vol. 13, pp. 40–55.

    Article  CAS  Google Scholar 

  12. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 656–64.

    CAS  Google Scholar 

  13. L.A. Gypen and A. Deruyttere: J. Mater. Sci., 1977, vol. 12, pp. 1028–38.

    Article  CAS  Google Scholar 

  14. Y. Nakada and A.S. Keh: Metall. Trans., 1971, vol. 2, pp. 441–47.

    CAS  Google Scholar 

  15. G. Choi, T. Shinoda, Y. Mishima, and T. Suzuki: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 780–85.

    CAS  Google Scholar 

  16. M.Z. Butt: J. Phys.: Condens. Matter, 1990, vol. 2, pp. 5797–5808.

    Article  Google Scholar 

  17. M.Z. Butt: Phil. Mag. Lett., 1989, vol. 60, pp. 141–45.

    CAS  Google Scholar 

  18. W.L. Mankins and S. Lamb: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, p. 428–445.

    Google Scholar 

  19. P.A. Flinn: Strengthening Mechanisms in Solids, ASM INTERNATIONAL, Metals Park, OH, 1960, pp. 17–50.

    Google Scholar 

  20. K.R. Evans: in Treatise on Materials Science and Technology, H. Herman, Academic Press, New York, NY, 1974, pp. 113–81.

    Google Scholar 

  21. Binary Alloy Phase Diagrams, T.D. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2.

    Google Scholar 

  22. N. Clement, A. Coujou, M. Jouiad, P. Caron, H.O.K. Kirchner, and T. Khan: Superalloys 1996, TMS, Warrendale, PA, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., 1996, pp. 239–48.

    Google Scholar 

  23. M.K. Miller and R.C. Thomson: Oak Ridge National Laboratory, Oak Ridge, TN, and Loughborough University, Leicestershire, private communication, 1996.

  24. Inconel alloy 625, Inco Alloys International, Huntington, WV, 1985.

  25. A.J. Ardell: in Intermetallic Compounds: Principles and Practice, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons Ltd., Chichester, United Kingdom, 1995, pp. 257–86.

    Google Scholar 

  26. K.A. Gschneidner, B.J. Beaudry, and J. Capellen: Metals Handbook, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 2, pp. 720–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, H.A., Davis, C.L. & Thomson, R.C. Modeling solid solution strengthening in nickel alloys. Metall Mater Trans A 28, 1329–1335 (1997). https://doi.org/10.1007/s11661-997-0268-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0268-2

Keywords

Navigation