Skip to main content
Log in

Contact of crack surfaces during fatigue: Part 2. Simulations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A detailed model of the role of asperities in crack closure has been initiated in Part 1 of this article. Crack opening stress is defined as the far-field stress required to overcome the asperity-induced contact stresses along the crack. In this Part 2, the magnitude of crack opening stress is established as a function of roughness (σ 0); asperity density (N); maximum stress level (S max/S y ); shakedown pressure (p s 0/k), which reflects the effect of tangential tractions or friction; R ratio; and crack length. Normalizations permit application to a wide range of materials. The results, for selected levels of asperity density, are consolidated upon comparing the crack opening displacement (COD) with the roughness (σ 0) over four orders of magnitude. Specifically, a nonlinear relationship between COD/σ 0 and crack opening stress was established that can be readily used to determine crack opening stress over a broad range of conditions. The model has been utilized to predict crack opening stress levels for several materials, including 0.8 pct C steels, 9Cr-1Mo steels, Ti-4Al, Ti-46Al (γ-aluminide), and Al 2124 alloys. Experimental measurements of crack roughness and asperity density were conducted on titanium aluminide specimens using confocal microscopy, and crack closure predictions were made with the model. The predictions demonstrated very good agreement with the experimentally measured closure levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh: Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  2. H. Sehitoglu, K. Gall, and A.M. Garcia: Int. J. Fract., 1997, vol. 80 (2–3), pp. 165–92.

    Google Scholar 

  3. A. Garcia and H. Sehitoglu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2263–75.

    CAS  Google Scholar 

  4. R. Ritchie, W. Yu, A. Blom, and D. Holm: Fatigue Fract. Eng. Mater. Struct., 1987, vol. 10 (5), pp. 343–62.

    Article  Google Scholar 

  5. R.D. Carter, E.W. Lee, E.A. Starke, and C.J. Beevers: Metall. Trans. A, 1984, vol. 15A, pp. 553–63.

    Google Scholar 

  6. C.P. Blankenship and E.A. Starke: Fatigue Fract. Eng. Mater. Struct., 1991, vol. 14, pp. 103–14.

    Article  Google Scholar 

  7. D. Krueger, S.D. Antolovich, and R.H. Van Stone: Metall. Trans. A, 1987, vol. 18A, pp. 1431–49.

    CAS  Google Scholar 

  8. G.T. Gray III, J.C. Williams, and A.W. Thompson: Metall. Trans. A, 1983, vol. 14A, pp. 421–33.

    Google Scholar 

  9. S. Suresh: Metall. Mater. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  10. K. Gall, H. Sehitoglu, and Y. Kadioglu: Acta Metall., 1996, vol. 44 (10), pp. 3955–65.

    CAS  Google Scholar 

  11. N. Walker and C.J. Beevers: Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 135–48.

    Article  CAS  Google Scholar 

  12. J.M. Larsen: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1987.

    Google Scholar 

  13. J.E. Allison, R.C. Ku, and M.A. Pompetzki: ASTM 982 STP 171–185, ASTM, Philadelphia, PA, 1988.

    Google Scholar 

  14. T. Ogawa and K. Tokaji: Fatigue Fract. Eng. Mater. Struct., 1993, vol. 16 (9), pp. 973–82.

    Article  CAS  Google Scholar 

  15. A. Ohtsuka: Eng. Fract. Mech., 1975, vol. 7, p. 429.

    Article  Google Scholar 

  16. K. Minakawa and A.J. McEvily: Scripta Metall., 1981, vol. 15, pp. 633–36.

    Article  Google Scholar 

  17. A. Kapoor and K.L. Johnson: Leeds-Lyon Symp. on Tribology, 1993, pp. 81–90.

  18. K.L. Johnson and H.R. Shercliff: Int. J. Mech Sci., 1992, vol. 34 (5), pp. 375–94.

    Article  Google Scholar 

  19. V. Bhargava, C. Rubin, and G.T. Hahn: ASME, J. Appl. Mech., 1983, vol. 52, pp. 66–82.

    Google Scholar 

  20. Y. Jiang and H. Sehitoglu: Wear, 1996, vol. 191, pp. 35–44.

    Article  CAS  Google Scholar 

  21. S.J. Balsone, J.M. Larsen, D.C. Maxwell, and W.J. Jones: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 457–64.

    Google Scholar 

  22. H. Sehitoglu and W. Sun: ASME, J. Eng. Mater. Technol., 1991, vol. 113, pp. 31–41.

    Google Scholar 

  23. J.E. Allison and J.C. Williams: Titanium Science and Technology, G. Lujtering, U. Zwicker, and W. Burk, eds., DGM Publishers, Oberusel, 1985, vol. 1, pp. 2243–50.

    Google Scholar 

  24. H. Bao and A.J. McEvily: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1725–33.

    CAS  Google Scholar 

  25. A. McEvily: private communication, University of Connecticut, 1996.

  26. B. Cotterell and J. Rice: Int. J. Fract., 1980, vol. 16, pp. 155–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sehitoglu, H., García, A.M. Contact of crack surfaces during fatigue: Part 2. Simulations. Metall Mater Trans A 28, 2277–2289 (1997). https://doi.org/10.1007/s11661-997-0185-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0185-4

Keywords

Navigation