Skip to main content
Log in

Controlled drawing to produce desirable hardness and microstructural gradients in alloy 302 wire

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The production of a macroscopically duplex microstructure in stainless steel alloy 302 wire, fine grains on the wire surface and coarse grains at the wire interior, was investigated by systematically varying the drawing angle from 8 to 32 deg and the reduction from 1 to 15 pct. The measured hardness gradient was correlated to the microstructure after heat treating at 1000 °C for 0.5 hours. It was determined that the wire surface must exceed a hardness level of 207 KHN for recrystallization to a fine grain size, while the wire core must be hardened to a level between 166 and 207 KHN for grain growth. The deformation zone geometry parameter (Δ) for wire drawing, which is conventionally employed to give a relative measure of the strain distribution in a wire workpiece as a function of die angle and reduction, was utilized in the design of the experimental drawing schedules. The magnitude of measured hardness gradients and the corresponding calculated value of Δ were found to vary similarly with die angle but differently with reduction. At constant total reduction, multiple- and single-step drawing schedules produced equivalent hardness gradients, even though the calculated values for Δ indicated that the former would give a steeper gradient. Wires with two widely differing grain size gradients, coarse and fine vs. fine and coarse at the wire surface and center, were headed. The wire with fine grains on the surface had the higher resistance to surface cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Tevaarwerk, R. Sowerby, and A. Plumtree: Z. Metallkd., 1972, vol. 63, pp. 367–74.

    Google Scholar 

  2. R.M. Davison: Mechanical Working and Steel Processing III, Proc. Conf., TMS-AIME, Warrendale, PA, 1974, pp. 301–17.

    Google Scholar 

  3. G.W. Vickers, A. Plumtree, R. Sowerby, and J.L. Duncan: J. Eng. Mater. Technol., 1975, vol. 97, pp. 126–35.

    Google Scholar 

  4. E. Dannenmann and M. Blaich: Wire, 1980, vol. 29, pp. 84–88.

    Google Scholar 

  5. I. Lahti and M. Sulonen: Scand. J. Metall., 1982, vol. 11 (1), pp. 9–16.

    CAS  Google Scholar 

  6. H.A. Kuhn, P.W. Lee, and T. Erturk: J. Eng. Mater. Technol., 1973, vol. 95, pp. 213–18.

    Google Scholar 

  7. K.G. Eder: Wire Industry, 1986, vol. 53, pp. 696–704.

    Google Scholar 

  8. B. Avitzur: Proceedings of the First International Conference on Technology of Plasticity, Tokyo, 1984, Japan Society for Technology of Plasticity and Japan Society of Precision Engineering, Tokyo, Japan, pp. 948–60.

  9. A. Vannes and P. Thierry: J. Appl. Mech. Working Technol., 1981, vol. 5, pp. 251–66.

    Article  CAS  Google Scholar 

  10. F. Knap: Wied. Hutn., 1982, vol. 38 (6), pp. 195–99.

    Google Scholar 

  11. T. Matsunaga and K. Shiwaku: SEAISI Q., 1980, Jan., pp. 45–55.

  12. J.L. Tevaarwerk, A. Plumtree, and R. Sowerby: J. Eng. Mater. Technol., 1975, vol. 97, pp. 144–50.

    Google Scholar 

  13. A. Plumtree and R. Sowerby: Lubrication Eng., 1975, vol. 32, pp. 585–95.

    Google Scholar 

  14. J.L. Tevaarwerk, R. Sowerby, and A. Plumtree: J. Eng. Mater. Technol., 1975, vol. 97, pp. 136–43.

    CAS  Google Scholar 

  15. F.K. Bloom, G.N. Geller, and P.G. Mabus: Trans. ASM, 1947, vol. 39, pp. 843–67.

    CAS  Google Scholar 

  16. W.M. Baldwin, Jr. and C.A. Beiser: The Iron Age, 1955, vol. 175, pp. 82–85.

    Google Scholar 

  17. Carpenter Data Sheet 302HQ, Carpenter Technology Corp., Reading, PA.

  18. M.R. Riendeau: Master’s Thesis, Colorado School of Mines, Golden, CO, Feb. 1990.

    Google Scholar 

  19. C.C. Chen: in Process Modeling—Fundamentals and Applications to Metals, ASM, Metals Park, OH, 1980, pp. 365–86.

    Google Scholar 

  20. J.K. Lee, F.R. Ehrlich, L.A. Crall, and T.H. Collins: Metall. Trans. A, 1988, vol. 19A, pp. 329–35.

    CAS  Google Scholar 

  21. W.A. Backofen: Deformation Processing, Addison-Wesley Publishing Co., Inc., Reading, MA, 1972, p. 135.

    Google Scholar 

  22. D.K. Matlock and D.A. Burford: J. Appl. Met. Working, 1987, vol. 4 (4), pp. 301–05.

    CAS  Google Scholar 

  23. R.N. Wright: Wire Technol., 1976, vol. 4, pp. 57–61.

    Google Scholar 

  24. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13A, pp. 619–26.

    Google Scholar 

  25. M.C. Mataya, M.J. Carr, and G. Krauss: Mater. Sci. Eng., 1983, vol. 57, pp. 205–22.

    Article  CAS  Google Scholar 

  26. R.M. Caddell and A.G. Atkins: J. Eng. Industry, 1968, May, pp. 411–19.

  27. B.B. Hundy and A.R.E. Singer: J. Inst. Met., 1954, vol. 83, pp. 401–07.

    Google Scholar 

  28. W. Reiss and K. Pohlandt: Exp. Technol., 1986, Jan., pp. 20–24.

  29. J.F. Thomas, Jr. and R. Srinivasan: in Computer Simulation in Materials Science, R.J. Arsenault, J.R. Beeler, Jr., and D.M. Esterling, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 269–90.

    Google Scholar 

  30. M.C. Mataya and V.E. Sackschewsky: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2737–52.

    CAS  Google Scholar 

  31. G.L. Huang, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1989, vol. 20A, pp. 1239–46.

    CAS  Google Scholar 

  32. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35.

    Google Scholar 

  33. T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165–74.

    CAS  Google Scholar 

  34. S.G.S. Raman and K.A. Padmanabhan: J. Mater. Sci. Lett., 1994, vol. 13, pp. 389–92.

    Article  CAS  Google Scholar 

  35. D.K. Matlock, M.P. Riendeau, and M.L. Robinson: U.S. Patent Number 4,883,545, Colorado School of Mines, Golden, CO, Nov. 28, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riendeau, M.P., Mataya, M.C. & Matlock, D.K. Controlled drawing to produce desirable hardness and microstructural gradients in alloy 302 wire. Metall Mater Trans A 28, 363–375 (1997). https://doi.org/10.1007/s11661-997-0138-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0138-y

Keywords

Navigation