Skip to main content
Log in

Interfaces in MoSi2-SiC In Situ composites synthesized by melt processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interfaces between the primary β-SiC and the surrounding MoSi2 matrix in melt-synthesized in situ composites have been investigated, with emphasis on the chemistry and crystallographic relationships developed during solidification. Primary SiC growth occurs with {002} and {111} facets, both of which are found to template the subsequent nucleation and epitaxial growth of the MoSi2 matrix. Eight independent orientation relationships (ORs) were identified, involving the following combinations of planes:

$$\begin{gathered} \left\{ {002} \right\}_{Sic} \parallel \left( {001} \right)_{MoSi_2 } \left( {3 rotational variants} \right), or \{ 101)_{MoSi_2 } \hfill \\ \left\{ {111} \right\}_{Sic} \parallel (001)_{MoSi_2 } , or \{ 100)_{MoSi_2 } \left( {2 rotational variants} \right),or \{ 101)_{MoSi_2 } \hfill \\ \end{gathered} $$

The interfacial relationships were rationalized using coincident site lattice arguments as well as energetic simulations based on the Grey-Bohr algorithm. The latter analysis suggests that the multiplicity of relationships arises from local effects associated with the size and shape of the adsorbate layers preceding the formation of the MoSi2 nuclei. An amorphous carbon layer, 2- to 5-nm thick, was detected at all interfaces and some of the matrix grain boundaries. This interphase is believed to evolve by solid-state precipitation of C during postsolidification cooling and is, in principle, metastable. The C interphase enables easy debonding and thus may have important implications for the mechanical performance of materials involving SiC/MoSi2 constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.D. Gac and J.J. Petrovic: J. Am. Ceram. Soc., 1985, vol. 68, pp. C200-C201.

    Article  Google Scholar 

  2. K. Sadananda, C.R. Feng, and H. Jones: Mater. Sci. Eng., 1992, vol. A155, pp. 227–40.

    CAS  Google Scholar 

  3. M.J. Maloney and R.J. Hecht: Mater. Sci. Eng., 1992, vol. A155, pp. 19–32.

    CAS  Google Scholar 

  4. T.C. Lu, A.G. Evans, R.J. Hecht, and R. Mehrabian: Acta Metall. Mater., 1991, vol. 39, pp. 1853–62.

    Article  CAS  Google Scholar 

  5. J.P.A. Löfvander, J.Y. Yang, C.G. Levi, and R. Mehrabian: in Advanced Metal Matrix Composites for Elevated Temperatures, M.N. Gungor, ed., ASM INTERNATIONAL, Metals Park, OH, 1991, pp. 1–10.

    Google Scholar 

  6. S. Maloy, A.H. Heuer, J. Lewandowski, and J.J. Petrovic: J. Am. Ceram. Soc., 1991, vol. 74, pp. 2704–06.

    Article  CAS  Google Scholar 

  7. T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, and R. Mehrabian: Acta Metall. Mater., 1991, vol. 39, pp. 1883–90.

    Article  CAS  Google Scholar 

  8. E. Fitzer and W. Remmele: Proc. 5th Int. Conf. on Composite Materials, ICCM-V, W.C. Harrigan, Jr., J. Strife, and A.K. Dhinggra, eds., TMS-AIME, Warrendale, PA, 1985, pp. 515–30.

    Google Scholar 

  9. J. Besson, M. De Graef, J.P.A. Löfvander, and S.M. Spearing: J. Mater. Sci., 1992, vol. 27, pp. 4160–66.

    Article  CAS  Google Scholar 

  10. H.E. Dève, C.H. Weber, and M.J. Maloney: Mater. Sci. Eng., 1992, vol. A153, pp. 668–75.

    Google Scholar 

  11. H. Nowotny, E. Parthé, R. Kieffer, and F. Benesousky: Monatsh. Chem., 1954, vol. 85, pp. 255–72.

    Article  CAS  Google Scholar 

  12. D.J. Tilly, J.P.A. Löfvander, and C.G. Levi: in Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, J. Graves, and D.L. Anton, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 295–300.

    Google Scholar 

  13. R.M. Aikin, Jr.: Scripta Metall., 1992, vol. 26, pp. 1025–30.

    Article  CAS  Google Scholar 

  14. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, P. Villars and L.D. Calvert, eds., ASM, Metals Park, OH, 1985.

  15. D.J. Tilly, J.P.A. Löfvander, and C.G. Levi: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1889–1900.

    CAS  Google Scholar 

  16. Crystal Defects and Crystalline Interfaces, W. Bollmann, ed., Springer-Verlag, New York, NY, 1970, p. 143.

  17. F. Grey and J. Bohr: Europhys. Lett., 1992, vol. 18, pp. 717–22.

    Google Scholar 

  18. F. Grey and J. Bohr: Appl. Surf. Sci., 1993, vols. 65–66, pp. 35–40.

    Article  Google Scholar 

  19. P. Hartman and W.G. Perdok: Acta Cryst., 1955, vol. 8, pp. 521–25.

    Article  CAS  Google Scholar 

  20. C. Vahlas, P.Y. Chevalier, and E. Blanquet: CALPHAD, 1989, vol. 12, pp. 273–92.

    Article  Google Scholar 

  21. A.G. Evans: J. Am. Ceram. Soc., 1990, vol. 73, pp. 187–206.

    Article  CAS  Google Scholar 

  22. F. Heredia, J. McNulty, F.W. Zok, and A.G. Evans: J. Am. Ceram. Soc., 1995, vol. 78, pp. 2097–2100.

    Article  CAS  Google Scholar 

  23. A.G. Evans, F.W. Zok, R.M. McMeeking, and Z.Z. Du: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2345–52.

    Article  CAS  Google Scholar 

  24. N. Stoloff: Presentation at the ARPA-URI Program Review, Rensselaer Polytechnic Institute, Troy, NY, May 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilly, D.J., Löfvander, J.P.A., DeGraef, M. et al. Interfaces in MoSi2-SiC In Situ composites synthesized by melt processing. Metall Mater Trans A 28, 1901–1911 (1997). https://doi.org/10.1007/s11661-997-0120-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0120-8

Keywords

Navigation