Skip to main content
Log in

Solidification paths and carbide morphologies in melt-processed MoSi2-SiC In Situ composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present investigation was undertaken to elucidate the microstructural evolution of MoSi2-SiC in situ composites produced by melt processing. An assessment of the existing liquidus projection was performed by a combination of thermodynamic modeling, analysis of solidification microstructures, and measurements of the thermal history during solidification. Results show that the quasibinary MoSi2-SiC eutectic occurs at ∼2 at. pct C and 2283 K, rather than 8 at. pct C and 2173 K, as previously reported. The ensuing L+MoSi2+SiC monovariant line runs almost parallel to the SiMoSi2 binary and terminates at a ternary L ↔ Si+MoSi2+SiC eutectic calculated at 1.5Mo-0.84C (at. pct) and ∼1670 K. The maximum amount of SiC that may be produced by solidification along the quasibinary isopleth is ∼37 vol pct, of which ∼35 vol pct grows as primary. Analysis of solidification microstructures shows SiC grows with the cubic β polytype structure (B3), while MoSi2 grows with the tetragonal C11 b structure. Primary SiC may grow as equiaxed particles, platelets, and hopper crystals. Coupled growth with MoSi2 leads to SiC in the shape of thin ribbons, sheets, and needles. The facets of the SiC crystals were identified to be of the {111} and {002} type, in agreement with the periodic bond chain analysis. The predominant platelike morphology was shown to develop due to a re-entrant twin mechanism similar to that observed in Si and Ge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Evans: J. Am. Ceram. Soc., 1990, vol. 73, pp. 187–206.

    Article  CAS  Google Scholar 

  2. J. Schlichting: High Temp.-High Pressure, 1978, vol. 10, pp. 241–69.

    CAS  Google Scholar 

  3. E. Fitzer and W. Remmele: Proc. 5th Int. Conf. on Composite Materials, ICCM-V, W.C. Harrigan, Jr., J. Strife, and A.K. Dhinggra, eds., TMS-AIME, Warrendale, PA, 1985, pp. 515–30.

    Google Scholar 

  4. H.E. Dève and M.J. Maloney: Acta Metall. Mater., 1991, vol. 39, pp. 2275–84.

    Article  Google Scholar 

  5. T.C. Lu, A.G. Evans, R.J. Hecht, and R. Mehrabian: Acta Metall. Mater., 1991, vol. 39, pp. 1853–62.

    Article  CAS  Google Scholar 

  6. J. Besson, M. De Graef, J.P.A. Löfvander, and S.M. Spearing: J. Mater. Sci., 1992, vol. 27, pp. 4160–66.

    Article  CAS  Google Scholar 

  7. H.E. Dève, C.H. Weber, and M.J. Maloney: Mater. Sci. Eng., 1992, vol. A153, pp. 668–75.

    Google Scholar 

  8. M.J. Maloney and R.J. Hecht: Mater. Sci. Eng., 1992, vol. A155, pp. 19–32.

    CAS  Google Scholar 

  9. T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, and R. Mehrabian: Acta Metall. Mater., 1991, vol. 39, pp. 1883–90.

    Article  CAS  Google Scholar 

  10. H. Nowotny, E. Parthé, R. Kieffer, and F. Benesousky: Monatsh. Chem., 1954, vol. 85, pp. 255–72.

    Article  CAS  Google Scholar 

  11. F.D. Gac and J.J. Petrovic: J. Am. Ceram. Soc., 1985, vol. 68, pp. C200-C201.

    Article  Google Scholar 

  12. K. Sadananda, C.R. Feng, and H. Jones: Mater. Sci. Eng., 1992, vol. A155, pp. 227–40.

    CAS  Google Scholar 

  13. J.J. Petrovic, R.E. Honnell, and A.K. Vasudevan: Intermetallic Matrix Composites, Materials Research Society Symposia Proceedings, D.L. Anton, P.L. Martin, D.B. Miracle, and R.M. McMeeking, eds., Materials Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 123–30.

    Google Scholar 

  14. J. Cook, A. Khan, E. Lee, and R. Mahapatra: Mater. Sci. Eng., 1992, vol. A155, pp. 183–98.

    CAS  Google Scholar 

  15. W.S. Gibbs, J.J. Petrovic, and R.E. Honnell: Ceram. Eng. Sci. Proc., 1987, vol. 8, pp. 645–48.

    Article  Google Scholar 

  16. D.E. Alman, K.G. Shaw, N.S. Stoloff, and K. Rajan: Mater. Sci. Eng., 1992, vol. A155, pp. 85–93.

    CAS  Google Scholar 

  17. J.P.A. Löfvander, J.Y. Yang, C.G. Levi, and R. Mehrabian: in Advanced Metal Matrix Composites for Elevated Temperatures, M.N. Gungor, ed., ASM INTERNATIONAL, Metals Park, OH, 1991, pp. 1–10.

    Google Scholar 

  18. J.D. Cotton, Y.S. Kim, and M.J. Kaufman: Mater. Sci. Eng., 1991, vol. A144, pp. 287–91.

    CAS  Google Scholar 

  19. S. Maloy, A.H. Heuer, J. Lewandowski and J.J. Petrovic: J. Am. Ceram. Soc., 1991, vol. 74, pp. 2704–06.

    Article  CAS  Google Scholar 

  20. C.H. Henager, J.L. Brimhall, and J.P. Hirth: Mater. Sci. Eng., 1992, vol. A155, pp. 109–14.

    CAS  Google Scholar 

  21. N. Patibandla, W.B. Hillig, M.R. Ramakrishnam, D.E. Altman, and N.S. Stoloff: High Temperature Silicides and Refractory Alloys, Materials Research Society Symposia Proceedings, C.L. Briant, J.J. Petrovic, B.P. Bewlay, A.K. Vasudevan, and H.A. Lipsitt, eds. Materials Research Society, Pittsburgh, PA, 1994, vol. 322, pp. 59–69.

    Google Scholar 

  22. D. Zeng, M.J. Hampden-Smith, and L.-M. Wang: High Temperature Silicides and Refractory Alloys, Materials Research Society Symposia Proceedings, C.L. Briant, J.J. Petrovic, B.P. Bewlay, A.K. Vasudevan, and H.A. Lipsitt, eds., Materials Research Society, Pittsburgh, PA, 1994, vol. 322, pp. 127–31.

    Google Scholar 

  23. Y.S. Kim, M.R. Johnson, R. Abbaschian, and M.J. Kaufman: High Temperature Ordered Intermetallic Alloys IV, Materials Research Society Symposia Proceedings, L. Johnson, D. Pope, and J. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 839–45.

    Google Scholar 

  24. S.A. Maloy, J.J. Lewandowski, A.H. Heuer, and J.J. Petrovic: Mater. Sci. Eng., 1992, vol. A155, pp. 159–63.

    CAS  Google Scholar 

  25. D.J. Tilly, J.P.A. Löfvander, and C.G. Levi: Intermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, J. Graves, and D.L. Anton, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 295–300.

    Google Scholar 

  26. R.M. Aikin, Jr.: Scripta Metall., 1992, vol. 26, pp. 1025–30.

    Article  CAS  Google Scholar 

  27. R. Tiwari, H. Herman, and S. Sampath: High Temperature Ordered Intermetallic Alloys IV, Materials Research Society Symposia Proceedings, L. Johnson, D. Pope, and J. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 807–13.

    Google Scholar 

  28. R.G. Castro, R.W. Smith, A.D. Rollett, and P.W. Stanek: Mater. Sci. Eng., 1992, vol. A155, pp. 101–07.

    CAS  Google Scholar 

  29. D.J. Tilly, J.P.A. Löfvander, M. DeGraef, and C.G. Levi: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1901–11.

    CAS  Google Scholar 

  30. F.J. van Loo, F.M. Smet, G.D. Rieck, and G. Verspui: High Temp.-High Pressure, 1982, vol. 14, pp. 25–31.

    Google Scholar 

  31. J.M. Guiot: Silic. Industr., 1966, vol. 31, pp. 363–67.

    CAS  Google Scholar 

  32. R.W. Olesinski and G.J. Abbaschian: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 486–89.

    Google Scholar 

  33. H.L. Lukas, J. Weiss, and E.T. Henig: CALPHAD, 1982, vol. 6, pp. 229–51.

    Article  CAS  Google Scholar 

  34. H.L. Lukas, J. Weiss, U. Kattner, and E.T. Henig: Computer Programs BINFKT and PMLFKT, Max-Planck-Institut für Metallforschung, Stuttgart, Federal Republic of Germany, 1988.

    Google Scholar 

  35. C. Vahlas, P.Y. Chevalier, and E. Blanquet: CALPHAD, 1989, vol. 12, pp. 273–92.

    Article  Google Scholar 

  36. P. Gustafson: Z. Metallkd., 1988, vol. 79, pp. 397–402.

    CAS  Google Scholar 

  37. L. Kaufman: CALPHAD, 1979, vol. 3, pp. 45–76.

    Article  Google Scholar 

  38. N. Saunders, A.P. Miodownik, and A.T. Dinsdale: CALPHAD, 1988, vol. 12, pp. 351–74.

    Article  CAS  Google Scholar 

  39. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 1985, vol. 14, p. 634.

    Google Scholar 

  40. R.T. Dolloff: WADD Technical Report 60–143, Wright Air Development Division, Dayton, OH, 1969, as cited in Ref. 32.

  41. P. Hartman and W.G. Perdok: Acta Cryst., 1955, vol. 8, pp. 49–52 and 521–29.

    Article  CAS  Google Scholar 

  42. A.H. Smith: in Metallurgy of Elemental and Compound Semiconductors, R.O. Grubel, ed., Interscience Publishers, New York, NY, 1961, p. 431.

    Google Scholar 

  43. N.W. Thibault: Am. Mineralogist, 1944, vol. 20, p. 249.

    Google Scholar 

  44. A.A. Chernov: J. Cryst. Growth, 1974, vols. 24–25, pp. 11–31.

    Article  Google Scholar 

  45. I. Minkoff and B. Lux: J. Cryst. Growth, 1974, vol. 22, pp. 163–65.

    Article  CAS  Google Scholar 

  46. G.F. Bolling and W.A. Tiller: in Metallurgy of Elemental and Compound Semiconductors, R.O. Grubel, ed., Interscience Publishers, New York, NY, 1961, p. 97.

    Google Scholar 

  47. D.R. Hamilton and R.G. Seidensticker: J. Appl. Phys., 1960, vol. 31, pp. 1165–68.

    Article  CAS  Google Scholar 

  48. R.S. Wagner: Acta. Metall., 1960, vol. 8, pp. 57–60.

    Article  Google Scholar 

  49. A.R. Verma and P. Krishna: Polymorphism and Polytypsim in Crystals, John Wiley & Sons, New York, NY, 1966, p. 92.

    Google Scholar 

  50. R. Elliot: Eutectic Solidification Processing, Butterworth and Co., London, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilly, D.J., Löfvander, J.P.A. & Levi, C.G. Solidification paths and carbide morphologies in melt-processed MoSi2-SiC In Situ composites. Metall Mater Trans A 28, 1889–1900 (1997). https://doi.org/10.1007/s11661-997-0119-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0119-1

Keywords

Navigation