Skip to main content
Log in

Thermal cycling behavior of as-quenched and aged Ti-6Al-4V alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal cycling tests between 77 and 623 K were performed on Ti-6Al-4V alloy; the tensile properties were evaluated, and transmission electron microscopy (TEM) microstructural analysis was performed both before and after thermal cycling. Thermal cycling (1000 cycles) promptly increases the strength of the as-quenched alloy, induces a slight decrease in strength for the near-peak-aged alloy, and makes no change for that of the overaged alloy. The elongation of the alloy in all heat-treated conditions decreases after 1000 thermal cycles. The loss of fracture elongation of the asquenched alloy is the largest, but the residual ductility is the highest. The loss of fracture elongation for the near-peak-aged alloy is lower, and the residual plasticity is higher than those for the overaged alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Tobler: Crack Fracture, ASTM STP 601, ASTM, Philadelphia, PA, 1976, pp. 346–70.

    Google Scholar 

  2. Yunxue Wu: Sinica J. Aerospace Mater. Technol., 1992, No. 4, p. 62.

  3. Lei Sheng: Sinica J. Aerospace Mater. Technol., 1992, No. 4, p. 27.

  4. Y.T. Lee and G. Welsch: in Titanium Science and Technology, G. Lütjering, ed., 1984, pp. 1689–96.

  5. E.W. Collings: Titanium 80 Science and Technology, H. Kimura and O. Izumi, eds., AIME, New York, NY, 1980, p. 77.

    Google Scholar 

  6. J.C. Le Flour and R. Locicéro: Scripta Metall., 1987, vol. 21, pp. 1071–76.

    Article  CAS  Google Scholar 

  7. T. Siegmund, E. Werner, and F.D. Fischer: Mater. Sci. Eng., 1993, vol. A169, pp. 125–34.

    CAS  Google Scholar 

  8. G.S. Daehn and T. Oyama: Scripta Metall., 1988, vol. 22, pp. 1097–1102.

    Article  CAS  Google Scholar 

  9. J. Echigoya, M. Taya, and W.D. Armstrong: Mater. Sci. Eng., 1991, vol. A141, pp. 63–66.

    CAS  Google Scholar 

  10. B. Sartorius, F. Reier, and P. Wolfram: Mater. Sci. Eng., 1991, vol. B9, pp. 109–13.

    Article  CAS  Google Scholar 

  11. Hajime Ikuno and Shin-ichi Towata: J. Jpn. Inst. Met., 1989, vol. 53 (3), pp. 327–32.

    CAS  Google Scholar 

  12. M.A. Wright: Metall. Trans. A, 1975, vol. A6, pp. 129–34.

    Google Scholar 

  13. S.M. Jeng, J.M. Yang, and S. Aksoy: Mater. Sci. Eng., 1992, vol. A156, pp. 117–24.

    CAS  Google Scholar 

  14. K. Tsuji, Y. Takegawa, and K. Kojima: Mater. Sci. Eng., 1991, vol. A136, L1-L4.

    CAS  Google Scholar 

  15. G. Albertini, G. André, R. Matera, P. Miele, M. Merola, M. Perrin, and F. Rustichelli: Mater. Sci. Eng., 1991, vol. A148, pp. 211–17.

    CAS  Google Scholar 

  16. Vivek Ratna and D.S. Sarma: Scripta Metall., 1993, vol. 29, pp. 467–72.

    Article  CAS  Google Scholar 

  17. S.M. Russ: Metall. Trans. A, 1990, vol. 21A, pp. 1595–1602.

    CAS  Google Scholar 

  18. R.K. Brindley, R.A. Mackay, and P.A. Bartolotta: HITEMP Review 1990, NASA CP-10051, NASA, Washington, DC, 1990, pp. 38-1–38-12.

    Google Scholar 

  19. S.B. Sant and R.W. Smith: in Strength of Metals and Alloys, H.J. McQueen, J.P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, 1985, p. 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, H., He, S. & Lei, T. Thermal cycling behavior of as-quenched and aged Ti-6Al-4V alloy. Metall Mater Trans A 28, 1809–1814 (1997). https://doi.org/10.1007/s11661-997-0111-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0111-9

Keywords

Navigation