Skip to main content
Log in

Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Constant true strain rate simple compression tests were conducted on annealed, polycrystalline samples of α-brass and MP35N, and the evolution of the true stress (σ)-true strain (ε) response was documented. From these data, the strain hardening rate was numerically computed, normalized with shear modulus (G), and plotted against both (σσ 0)/G0 being the initial yield strength of the alloy) and ε. Such normalized plots for α-brass and MP35N were found to be almost identical to each other, and revealed four distinct stages of strain hardening: stage A, with a steadily decreasing strain hardening rate up to a true strain of about −0.08; stage B, with an almost constant strain hardening rate up to a true strain of about −0.2; stage C, with a steadily decreasing strain hardening rate up to a true strain of about −0.55; and a final stage D, again with an almost constant strain hardening rate. Optical microscopy and transmission electron microscopy (TEM) were performed on deformed samples. The results suggested that stage A corresponded to stage III strain hardening (dynamic recovery) of higher stacking fault energy (SFE) fcc metals such as copper. The onset of stage B correlated with the first observation of deformation twins in the microstructure. Further straining in stage B was found to produce clusters of parallel twins in an increasing number of grains. Stage C correlated with the development of severe inhomogeneity of deformation within most grains, and with the development of significant misorientation between the twin/matrix interface and the {111} plane in the matrix of the grain, i.e., the matrix/twin interface lost coherency with continued deformation. Stage D correlated with extensive formation of secondary twins that resulted in twin intersections in many grains. Early in stage D, some strain localization in the form of shear bands was observed. Although formation of these shear bands had no detectable effect on the macroscopic strain hardening rate, it did correlated with a marked change in texture evolution. Based on these experimental observations, we have developed and presented a physical description of the microstructural phenomena responsible for the various strain hardening stages observed in low SFE fcc alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U.F. Kocks, H.S. Chen, D.A. Rigney, and R.J. Schaefer: AIME Met. Conf. Ser., 1981, vol. 46, pp. 151–75.

    Google Scholar 

  2. A.D. Rollett, U.F. Kocks, J.D. Embury, M.G. Stout, and R.D. Doherty: Strength of Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1988, vol. 1, pp. 433–38.

    Google Scholar 

  3. A.S. Argon and P. Hassen: Acta Metall. Mater., 1993, vol. 41, pp. 3289–3306.

    Article  CAS  Google Scholar 

  4. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  5. G.G. Weber, A.M. Lush, A. Zavaliangos, and L. Anand: Int. J. Plast. 1990, vol. 6, pp. 701–44.

    Article  Google Scholar 

  6. J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Progr. Mater. Sci., 1980, vol. 25, pp. 69–412.

    Article  CAS  Google Scholar 

  7. S.S. Hecker and M.G. Stout: Deformation, Processing, and Structure, ASM Materials Science Seminar, ASM, Metals Park, OH, 1982, pp. 1–42.

  8. J. Hirsch, K. Lucke, and M. Hartherly: Acta Metall., 1988, vol. 36, pp. 2905–27.

    Article  CAS  Google Scholar 

  9. M. Blicharski and S. Gorczyca: Met. Sci., 1978, vol. 12, pp. 303–12.

    Article  CAS  Google Scholar 

  10. L. Rémy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.

    Google Scholar 

  11. P. Müllner, C. Solenthaler, and M.O. Speidel: Acta Metall. Mater., 1994, vol. 42, pp. 1727–32.

    Article  Google Scholar 

  12. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  13. A.W. Thompson, M.I. Baskes, and W.F. Flanagan: Acta Metall., 1973, pp. 1017–28.

  14. E. Romhanji, V. Milenkovic, and D. Drobnjak: Z. Metallkd., 1992, pp. 110–14.

  15. R.P. Singh and R.D. Doherty: Metall. Trans. A, 1992, vol. 23A, pp. 307–19.

    CAS  Google Scholar 

  16. N.K. Park and B.A. Parker: Strength of Metals and Alloys, Proc. 7th Int. Conf. on the Strength of Metals and Alloys, Pergamon, Oxford, U.K., 1985, vol. 1, pp. 159–64.

  17. L. Rémy: Acta Metall., 1978, vol. 16, pp. 443–51.

    Google Scholar 

  18. J.P. Bressanelli and A. Moskowitz: Trans. Am. Soc. Met., 1966, vol. 59, pp. 223–39.

    CAS  Google Scholar 

  19. R.E. Reed-Hill: Inhomogeneity of Plastic Deformation, ASM Seminar, ASM, Metals Park, OH, 1971, pp. 285–311.

  20. C. Biswas, M. Cohen, and J.F. Breedis: The Microstructure and Design of Alloys, Proc. 3rd Int. Conf. on Strength of Metals, 1973, vol. I, pp. 16–20.

    Google Scholar 

  21. G. Wasserman: Z. Metallkd., 1963, vol. 54, pp. 61–65.

    Google Scholar 

  22. T. Kamijo and K. Sekine: Metall. Trans., 1970, vol. 1, pp. 1287–92.

    CAS  Google Scholar 

  23. B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield: Met. Sci., 1978, pp. 343–51.

  24. T. Leffers, D.J. Jensen, and B. Major: Proc. 8th Int. Conf. on Textures of Materials, J.S. Kallend, and G. Gottstein, eds., TMS, Warrendale, PA, 1988, pp. 461.

    Google Scholar 

  25. R.A. Mulford and U.F. Kocks: Acta Metall., 1979, vol. 27, pp. 1125–34.

    Article  CAS  Google Scholar 

  26. H. Dong and A.W. Thompson: Metall. Trans. A, 1985, vol. 16A, pp. 1025–29.

    CAS  Google Scholar 

  27. S.R. Kalidindi, A. Abusafieh, and E. El-Danaf: Exp. Mech., 1997, vol. 37, pp. 213–18.

    Article  Google Scholar 

  28. J.A. Venables: Deformation Twinning, Gordon and Breach, New York, NY, 1964, pp. 77–116.

    Google Scholar 

  29. B. Fargette and D. Whitwham: Mem. Sci. Rev. Metall., 1976, vol. 73, pp. 197.

    CAS  Google Scholar 

  30. R.L. Fleischer: Acta Metall., 1987, vol. 35, pp. 2129–36.

    Article  CAS  Google Scholar 

  31. R.L. Fleischer, E.L. Hall, E.F. Koch, and E.J. Santer: General Electric Report No. 87CRD036, General Electric Company, Schenectady, NY, 1987.

    Google Scholar 

  32. P. Müllner, C. Solenthaler, and M.O. Speidel: in Twinning in Advanced Materials, M.H. Yoo and M. Wutting, ed., TMS, Warrendale, PA, 1994, pp. 483–90.

    Google Scholar 

  33. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 173–79.

    Article  CAS  Google Scholar 

  34. S. Mahajan and G.Y. Chin: Acta Metall., 1974, vol. 22, pp. 1113–19.

    Article  CAS  Google Scholar 

  35. K.J. Saito: J. Phys. Soc. Jpn., 1969, vol. 27, pp. 1234–45.

    Article  CAS  Google Scholar 

  36. G.D. Smith: U.S. Patent No. 3,356,542, E.I. DuPont, Wilmington, DE, 1967.

  37. A.H. Graham and J.L. Youngblood: Metall. Trans., 1970, vol. 1, pp. 423–30.

    CAS  Google Scholar 

  38. J.M. Drapier, P. Viatour, D. Coutsouradis, and L. Habraken: Cobalt, 1970, vol. 49, pp. 171–86.

    CAS  Google Scholar 

  39. M. Raghavan, B.J. Berkowitz, and R.D. Kane: Metall. Trans. A, 1980, vol. 11A, pp. 203–07.

    CAS  Google Scholar 

  40. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand: Phil. Trans. R. Soc. London A, 1992, vol. 341, pp. 443–77.

    CAS  Google Scholar 

  41. Joint Committee on Powder Diffraction Standards, Card No. 4-0836. ASTM, Philadelphia, PA, 1984.

  42. G.Y. Chin: in Textures in Research and Practice, J. Greuen and J. Wasserman, eds., Springer-Verlag, Berlin, 1969, p. 51.

    Google Scholar 

  43. E. El-Danaf, W. Sanders, S.R. Kalidindi, and R.D. Doherty: Drexel University, Philadelphia, PA, work in progress, 1997.

  44. G.Y. Chin, W.F. Hosford and D.R. Mendorf: Proc. R. Soc., 1969, vol. A309, pp. 433–56.

    Google Scholar 

  45. L. Remy: Acta Metall., 1977, vol. 25, pp. 711–16.

    Article  CAS  Google Scholar 

  46. K.S. Raghavan, A.S. Sastri, and M.J. Marcinkowski: Trans. AIME, 1969, vol. 245, pp. 1569–75.

    CAS  Google Scholar 

  47. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.

    Article  CAS  Google Scholar 

  48. S. Panchanadeeswaran, R.D. Doherty, and R. Becker: Acta Metall. Mater., 1995, vol. 44, pp. 1233–62.

    Google Scholar 

  49. S. Harren, T.C. Lowe, R.J. Asaro, and A. Needleman: Phil. Trans. R. Soc. London A, 1989, vol. 328, pp. 443–500.

    Google Scholar 

  50. R.O. Williams: Trans. TMS-AIME, 1962, vol. 224, pp. 129–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asgari, S., El-Danaf, E., Kalidindi, S.R. et al. Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall Mater Trans A 28, 1781–1795 (1997). https://doi.org/10.1007/s11661-997-0109-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0109-3

Keywords

Navigation