Skip to main content

Advertisement

Log in

Hydrogen embrittlement of Ni-Cr-Fe alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The purpose of this work was to investigate the role of chromium on hydrogen embrittlement of Ni-Cr-Fe alloys and thus to develop a better understanding of the low-temperature stress corrosion cracking (SCC) phenomenon. The effect of chromium on hydrogen embrittlement was examined using tensile tests followed by material evaluation via scanning electron microscopy (SEM) and light optical microscopy. Four alloys were prepared with chromium contents ranging from 6 to 35 wt pct. In the uncharged condition, ductility, as measured by the percent elongation or reduction in area, increased as the alloy chromium content increased. Hydrogen appeared to have only minor effects on the mechanical properties of the low-chromium alloys. The addition of hydrogen had a marked effect on the ductility of the higher-chromium alloys. In the 26 pct chromium alloy, the elongation to failure was reduced from 53 to 14 pct, with a change in fracture mode from mixed ductile dimple and ductile intergranular failure to a brittle appearing intergranular failure. A maximum in embrittlement was observed in the 26 pct Cr alloy. The maximum in embrittlement coincided with the minimum in stacking-fault energy. It is proposed that the increased hydrogen embrittlement in the high-chromium alloys is due to increased slip planarity caused by the lower stacking-fault energy. Slip planarity did not appear to affect the fracture of the uncharged specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Foster, W.H. Bamford, and R.J. Panthania: 7th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, NACE, Houston, TX, 1995, pp. 25–40.

    Google Scholar 

  2. G.L. Webb: 6th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, R.E. Gold and E.P. Simonen, eds., TMS, Warrendale, PA, 1993, pp. 687–95.

    Google Scholar 

  3. M.O. Speidel and R. Magdowski: in 6th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, R.E. Gold and E.P. Simonen, eds., TMS, Warrendale, PA, 1993, pp. 361–71.

    Google Scholar 

  4. K. Norring, J. Engstrom, and P. Norberg: 3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, G.J. Theus and J.R. Weeks, eds., TMS, Warrendale, PA, 1988, pp. 587–93.

    Google Scholar 

  5. C.M. Brown and W.J. Mills: Corrosion 96, NACE, Houston, TX, paper no. 90, 1996.

    Google Scholar 

  6. D.M. Symons: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1994.

    Google Scholar 

  7. C.A. Grove and L.D. Petzold: Corrosion of Nickel-Base Alloys, ASM, Metals Park, OH, 1985, pp. 165–80.

    Google Scholar 

  8. C.K. Elliott: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1985.

    Google Scholar 

  9. B.E.P. Beeston and L.K. France: J. Inst. Met., 1968, vol. 96, pp. 105–07.

    CAS  Google Scholar 

  10. P.S. Kotval: Trans. AIME, 1968, vol. 242, pp. 1651–56.

    CAS  Google Scholar 

  11. P.C.J. Gallagher: Metall. Trans., 1970, vol. 1, pp. 2429–61.

    CAS  Google Scholar 

  12. N. Clement, D. Caillard, and J.L. Martin: Acta Metall., 1984, vol. 32 (6), pp. 961–75.

    Article  CAS  Google Scholar 

  13. E.E. Stansbury, C.R. Brooks, and T.L. Arledge: J. Inst. Met., 1966, vol. 94, pp. 136–38.

    CAS  Google Scholar 

  14. A. Akhtar and E. Teghtsoonian: Metall. Trans., 1971, vol. 2, pp. 2757–63.

    CAS  Google Scholar 

  15. A.W. Thompson and I.M. Bernstein: in Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Publishing, New York, NY, 1980, vol. 7.

    Google Scholar 

  16. A.W. Thompson: Scripta Metall., 1982, vol. 16, pp. 1189–92.

    Article  CAS  Google Scholar 

  17. J. Crank: Mathematics of Diffusion, Claredon Press, Oxford, United Kingdom, 1956.

    Google Scholar 

  18. N. Kishimoto, T. Tanabe, T. Suzuki, and H. Yoshida: J. Nucl. Mater., 1985, vol. 127, pp. 1–9.

    Article  CAS  Google Scholar 

  19. R.C. Scarberry, S.C. Pearlman, and J.R. Crum: Corrosion, 1976, vol. 32, pp. 401–06.

    CAS  Google Scholar 

  20. J.J. Kai and M.N. Liu: Scripta Metall., 1989, vol. 23, pp. 17–22.

    Article  CAS  Google Scholar 

  21. P.D. Hicks and C.J. Altstetter: Metall. Trans. A, 1990, vol. 21A, pp. 365–72.

    CAS  Google Scholar 

  22. J.E. Franklin, G. Judd, and G.S. Ansell: Proc. 3rd ICSMA, Iron and Steel Institute, London, 1973, vol. 1, p. 345.

    Google Scholar 

  23. G.H. Gessinger, H.F. Fischmeister, and H.L. Lukas: Powder Metall., 1973, vol. 6 (31), p. 119.

    Google Scholar 

  24. K. Miyata and M. Igarashi: Metall. Trans. A, 1992, vol. 23A, pp. 953–61.

    CAS  Google Scholar 

  25. D.L. Douglass, G. Thomas, and W.R. Roser: Corrosion, 1964, vol. 20, pp. 15t-28t.

    CAS  Google Scholar 

  26. E.A. Steigerwald, F.W. Schaller, and A.R. Troiano: Trans. AIME, 1960, vol. 218, pp. 832–41.

    CAS  Google Scholar 

  27. W.M. Garrison and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  Google Scholar 

  28. K. Jagannadham and H.G.F. Wilsdorf: Mater. Sci. Eng., 1986, vol. 81, pp. 273–92.

    Article  CAS  Google Scholar 

  29. A.N. Stroh: Adv. Phys., 1957, vol. 6, p. 418.

    Google Scholar 

  30. E. Smith and J.T. Barnby: Met. Sci. J., 1967, vol. 1, pp. 56–64.

    CAS  Google Scholar 

  31. C. Zener: Trans. ASM, 1948, vol. 40, p. 3.

    Google Scholar 

  32. R.A. Oriani and P.H. Josephic: Acta Metall., 1974, vol. 22, pp. 1065–74.

    Article  CAS  Google Scholar 

  33. J. Eastman, T. Matsumoto, N. Narita, F. Heubaum, and H.K. Birnbaum: in Hydrogen Effects in Metals, A.W. Thompson and I.M. Bernstein, eds., Warrendale, PA, 1986, pp. 397–409.

  34. I.M. Robertson and H.K. Birnbaum: Acta Metall., 1986, vol. 34, pp. 353–66.

    Article  CAS  Google Scholar 

  35. S.V. Nair, R.R. Jensen, and J.K. Tien: Metall. Trans. A, 1983, vol. 14A, pp. 385–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symons, D.M. Hydrogen embrittlement of Ni-Cr-Fe alloys. Metall Mater Trans A 28, 655–663 (1997). https://doi.org/10.1007/s11661-997-0051-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0051-4

Keywords

Navigation