Skip to main content
Log in

The effect of SiC particle reinforcement on the creep behavior of 2080 aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of SiC particle reinforcement on the creep behavior of 2080 aluminum is investigated between 150 °C and 350 °C. The effect of particle size (F-280, F-600, and F-1000), volume fraction (10, 20, and 30 vol pct), and heat treatment (T6 and T8) on creep behavior is studied. In both the T6 and T8 conditions all composites are less creep resistant than similarly heat-treated monolithic materials when crept at 150 °C. These results contradict continuum mechanics predictions for steady-state creep rate, which predict composite strengthening. A high dislocation density is observed near SiC particles. It is proposed that strain localization near the reinforcements leads to microstructural breakdown and the subsequent reduction in creep resistance. When both materials are severely overaged or when they are tested at very high temperatures (350 °C), composite materials exhibit improved creep resistance relative to monolithic material. In these cases, the strengthening is consistent with continuum predictions for direct composite strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Webster: Metall. Trans. A, 1982, vol. 13A, pp. 1511–19.

    Google Scholar 

  2. T.G. Nieh: Metall. Trans A, 1984, vol. 15A, pp. 139–46.

    CAS  Google Scholar 

  3. T.G. Nieh, K. Xia, and T.G. Langdon: J. Eng. Mater. Technol., 1988, vol. 110, pp. 77–82.

    Article  CAS  Google Scholar 

  4. K. Xia, T.G. Nieh, J. Wadsworth, and T.G. Langdon: Fundamental Relationships between Microstructure and Mechanical Properties of Metal-Matrix Composites: The Minerals Metals and Materials Society, TMS, Warrendale, PA, 1990, pp. 543–56.

    Google Scholar 

  5. K.-T. Park, E.J. Lavernia, and F.A. Mohamed: Acta Metall., 1990, vol. 38, pp. 2149–59.

    Article  CAS  Google Scholar 

  6. M.S. Zedalis, I.D. Bryant, P.S. Gilman, and S.K. Das: JOM, 1991, vol. 43, pp. 29–31.

    CAS  Google Scholar 

  7. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan: Mater. Sci Eng. A, 1994, vol. 189, pp. 95–104.

    Article  Google Scholar 

  8. Y. Ma: University of Southern California, unpublished research, 1991.

  9. M.B. House, K.C. Meinert, and R.B. Bhagat: JOM, 1991, vol. 43, pp. 24–28.

    CAS  Google Scholar 

  10. R.B. Bhagat, M.F. Amateau, M.B. House, K.C. Meinert, and P. Nisson: J. Comp. Mater., 1992, vol. 26, pp. 1578–93.

    Article  CAS  Google Scholar 

  11. K.-T. Park and F.A. Mohamed: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3119–30.

    CAS  Google Scholar 

  12. G. Gonzalez-Doncel and O.D. Sherby:Acta Metall., 1993, vol. 41, pp. 2797–2805.

    Article  CAS  Google Scholar 

  13. M. McLean: Mater. Res. Soc. Proc., 1988, vol. 10, pp. 67–79.

    Google Scholar 

  14. P.E. Krajewski, J.E. Allison, and J.W. Jones: Metall. Trans. A, 1993, vol. 24A, pp. 2731–41.

    CAS  Google Scholar 

  15. P.E. Krajewski, J.W. Jones, and J.E. Allison: Proc. ASM Conf. on Processing, Fabrication, and Application of Advanced Composites, ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 151–58.

    Google Scholar 

  16. P.E. Krajewski, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3107–88.

    CAS  Google Scholar 

  17. T.G. Nieh and R. Karlak: Scripta Metall., 1984, vol. 18, pp. 25–28.

    Article  CAS  Google Scholar 

  18. T. Christman and S. Suresh: Acta Metall., 1988, vol. 36, pp. 1691–1704.

    Article  CAS  Google Scholar 

  19. I. Dutta and D.L. Bourell: Mater. Sci. Eng. A, 1989, vol. 112, pp. 67–77.

    Article  Google Scholar 

  20. G.M. Vyletel: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1994.

    Google Scholar 

  21. W.H. Hunt: Alcoa Innometalx Division, Alcoa Center, PA, personal communication, Apr. 1992.

  22. P.E. Krajewski, J.E. Allison, J.W. Jones: University of Michigan, Ann Arbor, MI, unpublished research, 1994.

  23. P.E. Krajewski: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1994.

    Google Scholar 

  24. R. Lagneborg and B. Bergman: Met. Sci., 1976, vol. 10, pp. 20–28.

    Article  CAS  Google Scholar 

  25. L.C. Davis and J.E. Allison: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3081–90.

    CAS  Google Scholar 

  26. G. Bao, J.W. Hutchinson, and R.M. McMeeking: Acta Metall., 1991, vol. 39, pp. 1871–82.

    Article  Google Scholar 

  27. K.S. Ravichandran and V. Seetharaman: Acta Metall., 1993, vol. 41, pp. 3351–61.

    Article  CAS  Google Scholar 

  28. J.A.G. Furness: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1991.

    Google Scholar 

  29. A.K. Ghosh and A. Basu: University of Michigan, Ann Arbor, MI, personal communication, 1994.

  30. A.B. Pandey, R.S. Mihsra, and Y.R. Mahajan:J. Mater. Sci., 1993, vol. 28, pp. 2943–49.

    Article  CAS  Google Scholar 

  31. B.F. Dyson and M. McLean: Acta Metall., 1983, vol. 31, pp. 17–27.

    Article  CAS  Google Scholar 

  32. G.C. Weatherly and R.B. Nicholson: Phil. Mag., 1968, vol. 17, pp. 807–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajewski, P.E., Allison, J.E. & Jones, J.W. The effect of SiC particle reinforcement on the creep behavior of 2080 aluminum. Metall Mater Trans A 28, 611–620 (1997). https://doi.org/10.1007/s11661-997-0046-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0046-1

Keywords

Navigation